# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" Lambda Callback ^^^^^^^^^^^^^^^ Create a simple callback on the fly using lambda functions. """ from typing import Callable, Optional from pytorch_lightning.callbacks.base import Callback class LambdaCallback(Callback): r""" Create a simple callback on the fly using lambda functions. Args: **kwargs: hooks supported by :class:`~pytorch_lightning.callbacks.base.Callback` Example:: >>> from pytorch_lightning import Trainer >>> from pytorch_lightning.callbacks import LambdaCallback >>> trainer = Trainer(callbacks=[LambdaCallback(setup=lambda *args: print('setup'))]) """ def __init__( self, on_before_accelerator_backend_setup: Optional[Callable] = None, setup: Optional[Callable] = None, on_configure_sharded_model: Optional[Callable] = None, teardown: Optional[Callable] = None, on_init_start: Optional[Callable] = None, on_init_end: Optional[Callable] = None, on_fit_start: Optional[Callable] = None, on_fit_end: Optional[Callable] = None, on_sanity_check_start: Optional[Callable] = None, on_sanity_check_end: Optional[Callable] = None, on_train_batch_start: Optional[Callable] = None, on_train_batch_end: Optional[Callable] = None, on_train_epoch_start: Optional[Callable] = None, on_train_epoch_end: Optional[Callable] = None, on_validation_epoch_start: Optional[Callable] = None, on_validation_epoch_end: Optional[Callable] = None, on_test_epoch_start: Optional[Callable] = None, on_test_epoch_end: Optional[Callable] = None, on_epoch_start: Optional[Callable] = None, on_epoch_end: Optional[Callable] = None, on_batch_start: Optional[Callable] = None, on_validation_batch_start: Optional[Callable] = None, on_validation_batch_end: Optional[Callable] = None, on_test_batch_start: Optional[Callable] = None, on_test_batch_end: Optional[Callable] = None, on_batch_end: Optional[Callable] = None, on_train_start: Optional[Callable] = None, on_train_end: Optional[Callable] = None, on_pretrain_routine_start: Optional[Callable] = None, on_pretrain_routine_end: Optional[Callable] = None, on_validation_start: Optional[Callable] = None, on_validation_end: Optional[Callable] = None, on_test_start: Optional[Callable] = None, on_test_end: Optional[Callable] = None, on_keyboard_interrupt: Optional[Callable] = None, on_save_checkpoint: Optional[Callable] = None, on_load_checkpoint: Optional[Callable] = None, on_before_backward: Optional[Callable] = None, on_after_backward: Optional[Callable] = None, on_before_optimizer_step: Optional[Callable] = None, on_before_zero_grad: Optional[Callable] = None, on_predict_start: Optional[Callable] = None, on_predict_end: Optional[Callable] = None, on_predict_batch_start: Optional[Callable] = None, on_predict_batch_end: Optional[Callable] = None, on_predict_epoch_start: Optional[Callable] = None, on_predict_epoch_end: Optional[Callable] = None, ): for k, v in locals().items(): if k == "self": continue if v is not None: setattr(self, k, v)