# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time from copy import deepcopy from typing import Callable import pytest import torch import torch.distributed import torch.nn.functional from lightning.fabric.fabric import Fabric from parity_fabric.models import ConvNet from parity_fabric.utils import ( cuda_reset, get_model_input_dtype, is_cuda_memory_close, is_state_dict_equal, is_timing_close, make_deterministic, ) from tests_fabric.helpers.runif import RunIf def train_torch( move_to_device: Callable, precision_context, input_dtype=torch.float32, ): make_deterministic(warn_only=True) memory_stats = {} model = ConvNet() model = move_to_device(model) dataloader = model.get_dataloader() optimizer = model.get_optimizer() loss_fn = model.get_loss_function() memory_stats["start"] = torch.cuda.memory_stats() model.train() iteration_timings = [] iterator = iter(dataloader) for _ in range(model.num_steps): t0 = time.perf_counter() inputs, labels = next(iterator) inputs, labels = move_to_device(inputs), move_to_device(labels) optimizer.zero_grad() with precision_context(): outputs = model(inputs.to(input_dtype)) loss = loss_fn(outputs.float(), labels) loss.backward() optimizer.step() t1 = time.perf_counter() iteration_timings.append(t1 - t0) memory_stats["end"] = torch.cuda.memory_stats() return model.state_dict(), torch.tensor(iteration_timings), memory_stats def train_fabric(fabric): make_deterministic(warn_only=True) memory_stats = {} model = ConvNet() initial_state_dict = deepcopy(model.state_dict()) optimizer = model.get_optimizer() model, optimizer = fabric.setup(model, optimizer) dataloader = model.get_dataloader() dataloader = fabric.setup_dataloaders(dataloader) loss_fn = model.get_loss_function() memory_stats["start"] = torch.cuda.memory_stats() model.train() iteration_timings = [] iterator = iter(dataloader) for _ in range(model.num_steps): t0 = time.perf_counter() inputs, labels = next(iterator) optimizer.zero_grad() outputs = model(inputs) loss = loss_fn(outputs, labels) fabric.backward(loss) optimizer.step() t1 = time.perf_counter() iteration_timings.append(t1 - t0) memory_stats["end"] = torch.cuda.memory_stats() # check that the model has changed assert not is_state_dict_equal(initial_state_dict, model.state_dict()) return model.state_dict(), torch.tensor(iteration_timings), memory_stats @pytest.mark.flaky(reruns=3) @pytest.mark.usefixtures("reset_deterministic_algorithm", "reset_cudnn_benchmark") @pytest.mark.parametrize( ("precision", "accelerator"), [ (32, "cpu"), pytest.param(32, "cuda", marks=RunIf(min_cuda_gpus=1)), # pytest.param(16, "cuda", marks=RunIf(min_cuda_gpus=1)), # TODO: requires GradScaler pytest.param("bf16", "cpu", marks=RunIf(skip_windows=True)), pytest.param("bf16", "cuda", marks=RunIf(min_cuda_gpus=1, bf16_cuda=True)), pytest.param(32, "mps", marks=RunIf(mps=True)), ], ) def test_parity_single_device(precision, accelerator): input_dtype = get_model_input_dtype(precision) cuda_reset() # Train with Fabric fabric = Fabric(precision=precision, accelerator=accelerator, devices=1) state_dict_fabric, timings_fabric, memory_fabric = train_fabric(fabric) cuda_reset() # Train with raw PyTorch state_dict_torch, timings_torch, memory_torch = train_torch( fabric.to_device, precision_context=fabric.autocast, input_dtype=input_dtype ) # Compare the final weights assert is_state_dict_equal(state_dict_torch, state_dict_fabric) # Compare the time per iteration assert is_timing_close(timings_torch, timings_fabric, rtol=1e-2, atol=0.1) # Compare memory usage if accelerator == "cuda": assert is_cuda_memory_close(memory_torch["start"], memory_fabric["start"]) assert is_cuda_memory_close(memory_torch["end"], memory_fabric["end"])