# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch.nn import functional as F from lightning.pytorch import LightningModule, Trainer from lightning.pytorch.demos.mnist_datamodule import MNISTDataModule class LitClassifier(LightningModule): def __init__(self, hidden_dim: int = 128, learning_rate: float = 0.0001): super().__init__() self.save_hyperparameters() self.l1 = torch.nn.Linear(28 * 28, self.hparams.hidden_dim) self.l2 = torch.nn.Linear(self.hparams.hidden_dim, 10) self.val_outptus = [] self.test_outputs = [] def forward(self, x): x = x.view(x.size(0), -1) x = torch.relu(self.l1(x)) return torch.relu(self.l2(x)) def training_step(self, batch, batch_idx): x, y = batch y_hat = self(x) return F.cross_entropy(y_hat, y) def validation_step(self, batch, batch_idx): x, y = batch probs = self(x) acc = self.accuracy(probs, y) self.val_outputs.append(acc) return acc def test_step(self, batch, batch_idx): x, y = batch logits = self(x) acc = self.accuracy(logits, y) self.test_outputs.append(acc) return acc def accuracy(self, logits, y): # currently IPU poptorch doesn't implicit convert bools to tensor # hence we use an explicit calculation for accuracy here. Once fixed in poptorch # we can use the accuracy metric. return torch.sum(torch.eq(torch.argmax(logits, -1), y).to(torch.float32)) / len(y) def on_validation_epoch_end(self) -> None: # since the training step/validation step and test step are run on the IPU device # we must log the average loss outside the step functions. self.log("val_acc", torch.stack(self.val_outptus).mean(), prog_bar=True) self.val_outptus.clear() def on_test_epoch_end(self) -> None: self.log("test_acc", torch.stack(self.test_outputs).mean()) self.test_outputs.clear() def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate) if __name__ == "__main__": dm = MNISTDataModule(batch_size=32) model = LitClassifier() trainer = Trainer(max_epochs=2, accelerator="ipu", devices=8) trainer.fit(model, datamodule=dm) trainer.test(model, datamodule=dm)