.. role:: hidden
:class: hidden-section
.. testsetup:: *
import os
from pytorch_lightning.trainer.trainer import Trainer
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.utilities.seed import seed_everything
.. _trainer:
Trainer
=======
Once you've organized your PyTorch code into a LightningModule,
the Trainer automates everything else.
.. raw:: html
|
This abstraction achieves the following:
1. You maintain control over all aspects via PyTorch code without an added abstraction.
2. The trainer uses best practices embedded by contributors and users
from top AI labs such as Facebook AI Research, NYU, MIT, Stanford, etc...
3. The trainer allows overriding any key part that you don't want automated.
|
-----------
Basic use
---------
This is the basic use of the trainer:
.. code-block:: python
model = MyLightningModule()
trainer = Trainer()
trainer.fit(model, train_dataloader, val_dataloader)
--------
Under the hood
--------------
Under the hood, the Lightning Trainer handles the training loop details for you, some examples include:
- Automatically enabling/disabling grads
- Running the training, validation and test dataloaders
- Calling the Callbacks at the appropriate times
- Putting batches and computations on the correct devices
Here's the pseudocode for what the trainer does under the hood (showing the train loop only)
.. code-block:: python
# put model in train mode
model.train()
torch.set_grad_enabled(True)
losses = []
for batch in train_dataloader:
# calls hooks like this one
on_train_batch_start()
# train step
loss = training_step(batch)
# clear gradients
optimizer.zero_grad()
# backward
loss.backward()
# update parameters
optimizer.step()
losses.append(loss)
--------
Trainer in Python scripts
-------------------------
In Python scripts, it's recommended you use a main function to call the Trainer.
.. code-block:: python
from argparse import ArgumentParser
def main(hparams):
model = LightningModule()
trainer = Trainer(accelerator=hparams.accelerator, devices=hparams.devices)
trainer.fit(model)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--accelerator", default=None)
parser.add_argument("--devices", default=None)
args = parser.parse_args()
main(args)
So you can run it like so:
.. code-block:: bash
python main.py --accelerator 'gpu' --devices 2
.. note::
Pro-tip: You don't need to define all flags manually. Lightning can add them automatically
.. code-block:: python
from argparse import ArgumentParser
def main(args):
model = LightningModule()
trainer = Trainer.from_argparse_args(args)
trainer.fit(model)
if __name__ == "__main__":
parser = ArgumentParser()
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args()
main(args)
So you can run it like so:
.. code-block:: bash
python main.py --accelerator 'gpu' --devices 2 --max_steps 10 --limit_train_batches 10 --any_trainer_arg x
.. note::
If you want to stop a training run early, you can press "Ctrl + C" on your keyboard.
The trainer will catch the ``KeyboardInterrupt`` and attempt a graceful shutdown, including
running accelerator callback ``on_train_end`` to clean up memory. The trainer object will also set
an attribute ``interrupted`` to ``True`` in such cases. If you have a callback which shuts down compute
resources, for example, you can conditionally run the shutdown logic for only uninterrupted runs.
------------
Validation
----------
You can perform an evaluation epoch over the validation set, outside of the training loop,
using :meth:`pytorch_lightning.trainer.trainer.Trainer.validate`. This might be
useful if you want to collect new metrics from a model right at its initialization
or after it has already been trained.
.. code-block:: python
trainer.validate(dataloaders=val_dataloaders)
------------
Testing
-------
Once you're done training, feel free to run the test set!
(Only right before publishing your paper or pushing to production)
.. code-block:: python
trainer.test(dataloaders=test_dataloaders)
------------
Reproducibility
---------------
To ensure full reproducibility from run to run you need to set seeds for pseudo-random generators,
and set ``deterministic`` flag in ``Trainer``.
Example::
from pytorch_lightning import Trainer, seed_everything
seed_everything(42, workers=True)
# sets seeds for numpy, torch and python.random.
model = Model()
trainer = Trainer(deterministic=True)
By setting ``workers=True`` in :func:`~pytorch_lightning.utilities.seed.seed_everything`, Lightning derives
unique seeds across all dataloader workers and processes for :mod:`torch`, :mod:`numpy` and stdlib
:mod:`random` number generators. When turned on, it ensures that e.g. data augmentations are not repeated across workers.
-------
.. _trainer_flags:
Trainer flags
-------------
accelerator
^^^^^^^^^^^
Supports passing different accelerator types (``"cpu", "gpu", "tpu", "ipu", "auto"``)
as well as custom accelerator instances.
.. code-block:: python
# CPU accelerator
trainer = Trainer(accelerator="cpu")
# Training with GPU Accelerator using 2 GPUs
trainer = Trainer(devices=2, accelerator="gpu")
# Training with TPU Accelerator using 8 tpu cores
trainer = Trainer(devices=8, accelerator="tpu")
# Training with GPU Accelerator using the DistributedDataParallel strategy
trainer = Trainer(devices=4, accelerator="gpu", strategy="ddp")
.. note:: The ``"auto"`` option recognizes the machine you are on, and selects the respective ``Accelerator``.
.. code-block:: python
# If your machine has GPUs, it will use the GPU Accelerator for training
trainer = Trainer(devices=2, accelerator="auto")
You can also modify hardware behavior by subclassing an existing accelerator to adjust for your needs.
Example::
class MyOwnAcc(CPUAccelerator):
...
Trainer(accelerator=MyOwnAcc())
.. note::
If the ``devices`` flag is not defined, it will assume ``devices`` to be ``"auto"`` and fetch the ``auto_device_count``
from the accelerator.
.. code-block:: python
# This is part of the built-in `GPUAccelerator`
class GPUAccelerator(Accelerator):
"""Accelerator for GPU devices."""
@staticmethod
def auto_device_count() -> int:
"""Get the devices when set to auto."""
return torch.cuda.device_count()
# Training with GPU Accelerator using total number of gpus available on the system
Trainer(accelerator="gpu")
.. warning:: Passing training strategies (e.g., ``"ddp"``) to ``accelerator`` has been deprecated in v1.5.0
and will be removed in v1.7.0. Please use the ``strategy`` argument instead.
accumulate_grad_batches
^^^^^^^^^^^^^^^^^^^^^^^
.. raw:: html
|
Accumulates grads every k batches or as set up in the dict.
Trainer also calls ``optimizer.step()`` for the last indivisible step number.
.. testcode::
# default used by the Trainer (no accumulation)
trainer = Trainer(accumulate_grad_batches=1)
Example::
# accumulate every 4 batches (effective batch size is batch*4)
trainer = Trainer(accumulate_grad_batches=4)
# no accumulation for epochs 1-4. accumulate 3 for epochs 5-10. accumulate 20 after that
trainer = Trainer(accumulate_grad_batches={5: 3, 10: 20})
amp_backend
^^^^^^^^^^^
.. raw:: html
|
Use PyTorch AMP ('native'), or NVIDIA apex ('apex').
.. testcode::
# using PyTorch built-in AMP, default used by the Trainer
trainer = Trainer(amp_backend="native")
# using NVIDIA Apex
trainer = Trainer(amp_backend="apex")
amp_level
^^^^^^^^^
.. raw:: html
|
The optimization level to use (O1, O2, etc...)
for 16-bit GPU precision (using NVIDIA apex under the hood).
Check `NVIDIA apex docs `_ for level
Example::
# default used by the Trainer
trainer = Trainer(amp_level='O2')
auto_scale_batch_size
^^^^^^^^^^^^^^^^^^^^^
.. raw:: html
|
Automatically tries to find the largest batch size that fits into memory,
before any training.
.. code-block:: python
# default used by the Trainer (no scaling of batch size)
trainer = Trainer(auto_scale_batch_size=None)
# run batch size scaling, result overrides hparams.batch_size
trainer = Trainer(auto_scale_batch_size="binsearch")
# call tune to find the batch size
trainer.tune(model)
auto_select_gpus
^^^^^^^^^^^^^^^^
.. raw:: html
|
If enabled and ``devices`` is an integer, pick available GPUs automatically.
This is especially useful when GPUs are configured to be in "exclusive mode",
such that only one process at a time can access them.
Example::
# no auto selection (picks first 2 GPUs on system, may fail if other process is occupying)
trainer = Trainer(accelerator="gpu", devices=2, auto_select_gpus=False)
# enable auto selection (will find two available GPUs on system)
trainer = Trainer(accelerator="gpu", devices=2, auto_select_gpus=True)
# specifies all GPUs regardless of its availability
Trainer(accelerator="gpu", devices=-1, auto_select_gpus=False)
# specifies all available GPUs (if only one GPU is not occupied, uses one gpu)
Trainer(accelerator="gpu", devices=-1, auto_select_gpus=True)
auto_lr_find
^^^^^^^^^^^^
.. raw:: html
|
Runs a learning rate finder algorithm (see this `paper `_)
when calling trainer.tune(), to find optimal initial learning rate.
.. code-block:: python
# default used by the Trainer (no learning rate finder)
trainer = Trainer(auto_lr_find=False)
Example::
# run learning rate finder, results override hparams.learning_rate
trainer = Trainer(auto_lr_find=True)
# call tune to find the lr
trainer.tune(model)
Example::
# run learning rate finder, results override hparams.my_lr_arg
trainer = Trainer(auto_lr_find='my_lr_arg')
# call tune to find the lr
trainer.tune(model)
.. note::
See the :ref:`learning rate finder guide `.
benchmark
^^^^^^^^^
.. raw:: html
|
Defaults to ``True`` if :paramref:`~pytorch_lightning.trainer.Trainer.deterministic` is not set.
This flag sets the ``torch.backends.cudnn.deterministic`` flag. You can read more about its impact
`here `__
This is likely to increase the speed of your system if your input sizes don't change. However, if they do, then it
might make your system slower. The CUDNN auto-tuner will try to find the best algorithm for the hardware when a new
input size is encountered. Read more about it `here `__.
Example::
# defaults to True if not deterministic (which is False by default)
trainer = Trainer()
# you can overwrite the value
trainer = Trainer(benchmark=False)
deterministic
^^^^^^^^^^^^^
.. raw:: html
|
If true enables cudnn.deterministic.
Might make your system slower, but ensures reproducibility.
Also sets ``$HOROVOD_FUSION_THRESHOLD=0``.
For more info check `[pytorch docs]
`_.
Example::
# default used by the Trainer
trainer = Trainer(deterministic=False)
callbacks
^^^^^^^^^
.. raw:: html
|
Add a list of :class:`~pytorch_lightning.callbacks.Callback`. Callbacks run sequentially in the order defined here
with the exception of :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint` callbacks which run
after all others to ensure all states are saved to the checkpoints.
.. code-block:: python
# a list of callbacks
callbacks = [PrintCallback()]
trainer = Trainer(callbacks=callbacks)
Example::
from pytorch_lightning.callbacks import Callback
class PrintCallback(Callback):
def on_train_start(self, trainer, pl_module):
print("Training is started!")
def on_train_end(self, trainer, pl_module):
print("Training is done.")
Model-specific callbacks can also be added inside the ``LightningModule`` through
:meth:`~pytorch_lightning.core.lightning.LightningModule.configure_callbacks`.
Callbacks returned in this hook will extend the list initially given to the ``Trainer`` argument, and replace
the trainer callbacks should there be two or more of the same type.
:class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint` callbacks always run last.
check_val_every_n_epoch
^^^^^^^^^^^^^^^^^^^^^^^
.. raw:: html
|
Check val every n train epochs.
Example::
# default used by the Trainer
trainer = Trainer(check_val_every_n_epoch=1)
# run val loop every 10 training epochs
trainer = Trainer(check_val_every_n_epoch=10)
checkpoint_callback
^^^^^^^^^^^^^^^^^^^
.. warning:: `checkpoint_callback` has been deprecated in v1.5 and will be removed in v1.7.
To disable checkpointing, pass ``enable_checkpointing = False`` to the Trainer instead.
default_root_dir
^^^^^^^^^^^^^^^^
.. raw:: html
|
Default path for logs and weights when no logger or
:class:`pytorch_lightning.callbacks.ModelCheckpoint` callback passed. On
certain clusters you might want to separate where logs and checkpoints are
stored. If you don't then use this argument for convenience. Paths can be local
paths or remote paths such as `s3://bucket/path` or 'hdfs://path/'. Credentials
will need to be set up to use remote filepaths.
.. testcode::
# default used by the Trainer
trainer = Trainer(default_root_dir=os.getcwd())
devices
^^^^^^^
Number of devices to train on (``int``), which devices to train on (``list`` or ``str``), or ``"auto"``.
It will be mapped to either ``gpus``, ``tpu_cores``, ``num_processes`` or ``ipus``,
based on the accelerator type (``"cpu", "gpu", "tpu", "ipu", "auto"``).
.. code-block:: python
# Training with CPU Accelerator using 2 processes
trainer = Trainer(devices=2, accelerator="cpu")
# Training with GPU Accelerator using GPUs 1 and 3
trainer = Trainer(devices=[1, 3], accelerator="gpu")
# Training with TPU Accelerator using 8 tpu cores
trainer = Trainer(devices=8, accelerator="tpu")
.. tip:: The ``"auto"`` option recognizes the devices to train on, depending on the ``Accelerator`` being used.
.. code-block:: python
# If your machine has GPUs, it will use all the available GPUs for training
trainer = Trainer(devices="auto", accelerator="auto")
# Training with CPU Accelerator using 1 process
trainer = Trainer(devices="auto", accelerator="cpu")
# Training with TPU Accelerator using 8 tpu cores
trainer = Trainer(devices="auto", accelerator="tpu")
# Training with IPU Accelerator using 4 ipus
trainer = Trainer(devices="auto", accelerator="ipu")
.. note::
If the ``devices`` flag is not defined, it will assume ``devices`` to be ``"auto"`` and fetch the ``auto_device_count``
from the accelerator.
.. code-block:: python
# This is part of the built-in `GPUAccelerator`
class GPUAccelerator(Accelerator):
"""Accelerator for GPU devices."""
@staticmethod
def auto_device_count() -> int:
"""Get the devices when set to auto."""
return torch.cuda.device_count()
# Training with GPU Accelerator using total number of gpus available on the system
Trainer(accelerator="gpu")
enable_checkpointing
^^^^^^^^^^^^^^^^^^^^
.. raw:: html
|
By default Lightning saves a checkpoint for you in your current working directory, with the state of your last training epoch,
Checkpoints capture the exact value of all parameters used by a model.
To disable automatic checkpointing, set this to `False`.
.. code-block:: python
# default used by Trainer, saves the most recent model to a single checkpoint after each epoch
trainer = Trainer(enable_checkpointing=True)
# turn off automatic checkpointing
trainer = Trainer(enable_checkpointing=False)
You can override the default behavior by initializing the :class:`~pytorch_lightning.callbacks.ModelCheckpoint`
callback, and adding it to the :paramref:`~pytorch_lightning.trainer.trainer.Trainer.callbacks` list.
See :doc:`Saving and Loading Checkpoints <../common/checkpointing>` for how to customize checkpointing.
.. testcode::
from pytorch_lightning.callbacks import ModelCheckpoint
# Init ModelCheckpoint callback, monitoring 'val_loss'
checkpoint_callback = ModelCheckpoint(monitor="val_loss")
# Add your callback to the callbacks list
trainer = Trainer(callbacks=[checkpoint_callback])
fast_dev_run
^^^^^^^^^^^^
.. raw:: html
|
Runs n if set to ``n`` (int) else 1 if set to ``True`` batch(es) of train, val and test
to find any bugs (ie: a sort of unit test).
Under the hood the pseudocode looks like this when running *fast_dev_run* with a single batch:
.. code-block:: python
# loading
__init__()
prepare_data
# test training step
training_batch = next(train_dataloader)
training_step(training_batch)
# test val step
val_batch = next(val_dataloader)
out = validation_step(val_batch)
validation_epoch_end([out])
.. testcode::
# default used by the Trainer
trainer = Trainer(fast_dev_run=False)
# runs 1 train, val, test batch and program ends
trainer = Trainer(fast_dev_run=True)
# runs 7 train, val, test batches and program ends
trainer = Trainer(fast_dev_run=7)
.. note::
This argument is a bit different from ``limit_train/val/test_batches``. Setting this argument will
disable tuner, checkpoint callbacks, early stopping callbacks, loggers and logger callbacks like
``LearningRateLogger`` and runs for only 1 epoch. This must be used only for debugging purposes.
``limit_train/val/test_batches`` only limits the number of batches and won't disable anything.
flush_logs_every_n_steps
^^^^^^^^^^^^^^^^^^^^^^^^
.. warning:: ``flush_logs_every_n_steps`` has been deprecated in v1.5 and will be removed in v1.7.
Please configure flushing directly in the logger instead.
.. raw:: html
|
Writes logs to disk this often.
.. testcode::
# default used by the Trainer
trainer = Trainer(flush_logs_every_n_steps=100)
See Also:
- :doc:`logging <../extensions/logging>`
.. _gpus:
gpus
^^^^
.. raw:: html
|
- Number of GPUs to train on (int)
- or which GPUs to train on (list)
- can handle strings
.. testcode::
# default used by the Trainer (ie: train on CPU)
trainer = Trainer(gpus=None)
# equivalent
trainer = Trainer(gpus=0)
Example::
# int: train on 2 gpus
trainer = Trainer(gpus=2)
# list: train on GPUs 1, 4 (by bus ordering)
trainer = Trainer(gpus=[1, 4])
trainer = Trainer(gpus='1, 4') # equivalent
# -1: train on all gpus
trainer = Trainer(gpus=-1)
trainer = Trainer(gpus='-1') # equivalent
# combine with num_nodes to train on multiple GPUs across nodes
# uses 8 gpus in total
trainer = Trainer(gpus=2, num_nodes=4)
# train only on GPUs 1 and 4 across nodes
trainer = Trainer(gpus=[1, 4], num_nodes=4)
See Also:
- :ref:`accelerators/gpu:Multi GPU Training`
gradient_clip_val
^^^^^^^^^^^^^^^^^
.. raw:: html
|
Gradient clipping value
- 0 means don't clip.
.. testcode::
# default used by the Trainer
trainer = Trainer(gradient_clip_val=0.0)
limit_train_batches
^^^^^^^^^^^^^^^^^^^
.. raw:: html
|
How much of training dataset to check.
Useful when debugging or testing something that happens at the end of an epoch.
.. testcode::
# default used by the Trainer
trainer = Trainer(limit_train_batches=1.0)
Example::
# default used by the Trainer
trainer = Trainer(limit_train_batches=1.0)
# run through only 25% of the training set each epoch
trainer = Trainer(limit_train_batches=0.25)
# run through only 10 batches of the training set each epoch
trainer = Trainer(limit_train_batches=10)
limit_test_batches
^^^^^^^^^^^^^^^^^^
.. raw:: html
|
How much of test dataset to check.
.. testcode::
# default used by the Trainer
trainer = Trainer(limit_test_batches=1.0)
# run through only 25% of the test set each epoch
trainer = Trainer(limit_test_batches=0.25)
# run for only 10 batches
trainer = Trainer(limit_test_batches=10)
In the case of multiple test dataloaders, the limit applies to each dataloader individually.
limit_val_batches
^^^^^^^^^^^^^^^^^
.. raw:: html
|
How much of validation dataset to check.
Useful when debugging or testing something that happens at the end of an epoch.
.. testcode::
# default used by the Trainer
trainer = Trainer(limit_val_batches=1.0)
# run through only 25% of the validation set each epoch
trainer = Trainer(limit_val_batches=0.25)
# run for only 10 batches
trainer = Trainer(limit_val_batches=10)
In the case of multiple validation dataloaders, the limit applies to each dataloader individually.
log_every_n_steps
^^^^^^^^^^^^^^^^^
.. raw:: html
|
How often to add logging rows (does not write to disk)
.. testcode::
# default used by the Trainer
trainer = Trainer(log_every_n_steps=50)
See Also:
- :doc:`logging <../extensions/logging>`
logger
^^^^^^
.. raw:: html
|
:doc:`Logger <../common/loggers>` (or iterable collection of loggers) for experiment tracking. A ``True`` value uses the default ``TensorBoardLogger`` shown below. ``False`` will disable logging.
.. testcode::
from pytorch_lightning.loggers import TensorBoardLogger
# default logger used by trainer
logger = TensorBoardLogger(save_dir=os.getcwd(), version=1, name="lightning_logs")
Trainer(logger=logger)
max_epochs
^^^^^^^^^^
.. raw:: html
|
Stop training once this number of epochs is reached
.. testcode::
# default used by the Trainer
trainer = Trainer(max_epochs=1000)
If both ``max_epochs`` and ``max_steps`` aren't specified, ``max_epochs`` will default to ``1000``.
To enable infinite training, set ``max_epochs = -1``.
min_epochs
^^^^^^^^^^
.. raw:: html
|
Force training for at least these many epochs
.. testcode::
# default used by the Trainer
trainer = Trainer(min_epochs=1)
max_steps
^^^^^^^^^
.. raw:: html
|
Stop training after this number of :ref:`global steps `.
Training will stop if max_steps or max_epochs have reached (earliest).
.. testcode::
# Default (disabled)
trainer = Trainer(max_steps=None)
# Stop after 100 steps
trainer = Trainer(max_steps=100)
If ``max_steps`` is not specified, ``max_epochs`` will be used instead (and ``max_epochs`` defaults to
``1000`` if ``max_epochs`` is not specified). To disable this default, set ``max_steps = -1``.
min_steps
^^^^^^^^^
.. raw:: html
|
Force training for at least this number of :ref:`global steps `.
Trainer will train model for at least min_steps or min_epochs (latest).
.. testcode::
# Default (disabled)
trainer = Trainer(min_steps=None)
# Run at least for 100 steps (disable min_epochs)
trainer = Trainer(min_steps=100, min_epochs=0)
max_time
^^^^^^^^
Set the maximum amount of time for training. Training will get interrupted mid-epoch.
For customizable options use the :class:`~pytorch_lightning.callbacks.timer.Timer` callback.
.. testcode::
# Default (disabled)
trainer = Trainer(max_time=None)
# Stop after 12 hours of training or when reaching 10 epochs (string)
trainer = Trainer(max_time="00:12:00:00", max_epochs=10)
# Stop after 1 day and 5 hours (dict)
trainer = Trainer(max_time={"days": 1, "hours": 5})
In case ``max_time`` is used together with ``min_steps`` or ``min_epochs``, the ``min_*`` requirement
always has precedence.
num_nodes
^^^^^^^^^
.. raw:: html
|
Number of GPU nodes for distributed training.
.. testcode::
# default used by the Trainer
trainer = Trainer(num_nodes=1)
# to train on 8 nodes
trainer = Trainer(num_nodes=8)
num_processes
^^^^^^^^^^^^^
.. raw:: html
|
Number of processes to train with. Automatically set to the number of GPUs
when using ``strategy="ddp"``. Set to a number greater than 1 when
using ``accelerator="cpu"`` and ``strategy="ddp"`` to mimic distributed training on a
machine without GPUs. This is useful for debugging, but **will not** provide
any speedup, since single-process Torch already makes efficient use of multiple
CPUs. While it would typically spawns subprocesses for training, setting
``num_nodes > 1`` and keeping ``num_processes = 1`` runs training in the main
process.
.. testcode::
# Simulate DDP for debugging on your GPU-less laptop
trainer = Trainer(accelerator="cpu", strategy="ddp", num_processes=2)
num_sanity_val_steps
^^^^^^^^^^^^^^^^^^^^
.. raw:: html
|
Sanity check runs n batches of val before starting the training routine.
This catches any bugs in your validation without having to wait for the first validation check.
The Trainer uses 2 steps by default. Turn it off or modify it here.
.. testcode::
# default used by the Trainer
trainer = Trainer(num_sanity_val_steps=2)
# turn it off
trainer = Trainer(num_sanity_val_steps=0)
# check all validation data
trainer = Trainer(num_sanity_val_steps=-1)
This option will reset the validation dataloader unless ``num_sanity_val_steps=0``.
overfit_batches
^^^^^^^^^^^^^^^
.. raw:: html
|
Uses this much data of the training set. If nonzero, will turn off validation.
If the training dataloaders have `shuffle=True`, Lightning will automatically disable it.
Useful for quickly debugging or trying to overfit on purpose.
.. testcode::
# default used by the Trainer
trainer = Trainer(overfit_batches=0.0)
# use only 1% of the train set
trainer = Trainer(overfit_batches=0.01)
# overfit on 10 of the same batches
trainer = Trainer(overfit_batches=10)
plugins
^^^^^^^
.. raw:: html
|
:ref:`Plugins` allow you to connect arbitrary backends, precision libraries, clusters etc. For example:
- :ref:`DDP `
- `TorchElastic `_
- :ref:`Apex `
To define your own behavior, subclass the relevant class and pass it in. Here's an example linking up your own
:class:`~pytorch_lightning.plugins.environments.ClusterEnvironment`.
.. code-block:: python
from pytorch_lightning.plugins.environments import ClusterEnvironment
class MyCluster(ClusterEnvironment):
def main_address(self):
return your_main_address
def main_port(self):
return your_main_port
def world_size(self):
return the_world_size
trainer = Trainer(plugins=[MyCluster()], ...)
prepare_data_per_node
^^^^^^^^^^^^^^^^^^^^^
.. warning:: ``prepare_data_per_node`` has been deprecated in v1.5 and will be removed in v1.7.
Please set its value inside ``LightningDataModule`` and/or ``LightningModule`` directly described
in the following code:
.. testcode::
class LitDataModule(LightningDataModule):
def __init__(self):
super().__init__()
self.prepare_data_per_node = True
.. raw:: html
|
If set to ``True`` will call ``prepare_data()`` on LOCAL_RANK=0 for every node.
If set to ``False`` will only call from NODE_RANK=0, LOCAL_RANK=0.
.. testcode::
# default
Trainer(prepare_data_per_node=True)
# use only NODE_RANK=0, LOCAL_RANK=0
Trainer(prepare_data_per_node=False)
precision
^^^^^^^^^
.. raw:: html
|
Lightning supports either double (64), float (32), bfloat16 (bf16), or half (16) precision training.
Half precision, or mixed precision, is the combined use of 32 and 16 bit floating points to reduce memory footprint during model training. This can result in improved performance, achieving +3X speedups on modern GPUs.
.. testcode::
:skipif: not torch.cuda.is_available()
# default used by the Trainer
trainer = Trainer(precision=32)
# 16-bit precision
trainer = Trainer(precision=16, accelerator="gpu", devices=1) # works only on CUDA
# bfloat16 precision
trainer = Trainer(precision="bf16")
# 64-bit precision
trainer = Trainer(precision=64)
.. note:: When running on TPUs, torch.bfloat16 will be used but tensor printing will still show torch.float32.
.. admonition:: If you are interested in using Apex 16-bit training:
:class: dropdown
NVIDIA Apex and DDP have instability problems. We recommend using the native AMP for 16-bit precision with multiple GPUs.
To use Apex 16-bit training:
1. `Install apex. `__
2. Set the ``precision`` trainer flag to 16. You can customize the `Apex optimization level `_ by setting the `amp_level` flag.
.. testcode::
:skipif: not _APEX_AVAILABLE or not torch.cuda.is_available()
# turn on 16-bit
trainer = Trainer(amp_backend="apex", amp_level="O2", precision=16, accelerator="gpu", devices=1)
process_position
^^^^^^^^^^^^^^^^
.. warning:: ``process_position`` has been deprecated in v1.5 and will be removed in v1.7.
Please pass :class:`~pytorch_lightning.callbacks.progress.TQDMProgressBar` with ``process_position``
directly to the Trainer's ``callbacks`` argument instead.
.. raw:: html
|
Orders the progress bar. Useful when running multiple trainers on the same node.
.. testcode::
# default used by the Trainer
trainer = Trainer(process_position=0)
.. note:: This argument is ignored if a custom callback is passed to :paramref:`~Trainer.callbacks`.
profiler
^^^^^^^^
.. raw:: html
|
To profile individual steps during training and assist in identifying bottlenecks.
See the :doc:`profiler documentation <../advanced/profiler>`. for more details.
.. testcode::
from pytorch_lightning.profiler import SimpleProfiler, AdvancedProfiler
# default used by the Trainer
trainer = Trainer(profiler=None)
# to profile standard training events, equivalent to `profiler=SimpleProfiler()`
trainer = Trainer(profiler="simple")
# advanced profiler for function-level stats, equivalent to `profiler=AdvancedProfiler()`
trainer = Trainer(profiler="advanced")
progress_bar_refresh_rate
^^^^^^^^^^^^^^^^^^^^^^^^^
.. warning:: ``progress_bar_refresh_rate`` has been deprecated in v1.5 and will be removed in v1.7.
Please pass :class:`~pytorch_lightning.callbacks.progress.TQDMProgressBar` with ``refresh_rate``
directly to the Trainer's ``callbacks`` argument instead. To disable the progress bar,
pass ``enable_progress_bar = False`` to the Trainer.
.. raw:: html
|
How often to refresh progress bar (in steps).
.. testcode::
# default used by the Trainer
trainer = Trainer(progress_bar_refresh_rate=1)
# disable progress bar
trainer = Trainer(progress_bar_refresh_rate=0)
Note:
- In Google Colab notebooks, faster refresh rates (lower number) is known to crash them because of their screen refresh rates.
Lightning will set it to 20 in these environments if the user does not provide a value.
- This argument is ignored if a custom callback is passed to :paramref:`~Trainer.callbacks`.
enable_progress_bar
^^^^^^^^^^^^^^^^^^^
Whether to enable or disable the progress bar. Defaults to True.
.. testcode::
# default used by the Trainer
trainer = Trainer(enable_progress_bar=True)
# disable progress bar
trainer = Trainer(enable_progress_bar=False)
reload_dataloaders_every_n_epochs
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. raw:: html
|
Set to a positive integer to reload dataloaders every n epochs.
.. code-block:: python
# if 0 (default)
train_loader = model.train_dataloader()
for epoch in epochs:
for batch in train_loader:
...
# if a positive integer
for epoch in epochs:
if not epoch % reload_dataloaders_every_n_epochs:
train_loader = model.train_dataloader()
for batch in train_loader:
...
.. _replace-sampler-ddp:
replace_sampler_ddp
^^^^^^^^^^^^^^^^^^^
.. raw:: html
|
Enables auto adding of :class:`~torch.utils.data.distributed.DistributedSampler`. In PyTorch, you must use it in
distributed settings such as TPUs or multi-node. The sampler makes sure each GPU sees the appropriate part of your data.
By default it will add ``shuffle=True`` for train sampler and ``shuffle=False`` for val/test sampler.
If you want to customize it, you can set ``replace_sampler_ddp=False`` and add your own distributed sampler.
If ``replace_sampler_ddp=True`` and a distributed sampler was already added,
Lightning will not replace the existing one.
.. testcode::
# default used by the Trainer
trainer = Trainer(replace_sampler_ddp=True)
By setting to False, you have to add your own distributed sampler:
.. code-block:: python
# in your LightningModule or LightningDataModule
def train_dataloader(self):
# default used by the Trainer
sampler = torch.utils.data.distributed.DistributedSampler(dataset, shuffle=True)
dataloader = DataLoader(dataset, batch_size=32, sampler=sampler)
return dataloader
.. note:: For iterable datasets, we don't do this automatically.
resume_from_checkpoint
^^^^^^^^^^^^^^^^^^^^^^
.. warning:: ``resume_from_checkpoint`` is deprecated in v1.5 and will be removed in v2.0.
Please pass ``trainer.fit(ckpt_path="some/path/to/my_checkpoint.ckpt")`` instead.
.. raw:: html
|
To resume training from a specific checkpoint pass in the path here. If resuming from a mid-epoch
checkpoint, training will start from the beginning of the next epoch.
.. testcode::
# default used by the Trainer
trainer = Trainer(resume_from_checkpoint=None)
# resume from a specific checkpoint
trainer = Trainer(resume_from_checkpoint="some/path/to/my_checkpoint.ckpt")
strategy
^^^^^^^^
Supports passing different training strategies with aliases (ddp, ddp_spawn, etc) as well as custom strategies.
.. code-block:: python
# Training with the DistributedDataParallel strategy on 4 GPUs
trainer = Trainer(strategy="ddp", accelerator="gpu", devices=4)
# Training with the DDP Spawn strategy using 4 cpu processes
trainer = Trainer(strategy="ddp_spawn", accelerator="cpu", devices=4)
.. note:: Additionally, you can pass your custom strategy to the ``strategy`` argument.
.. code-block:: python
from pytorch_lightning.strategies import DDPStrategy
class CustomDDPStrategy(DDPStrategy):
def configure_ddp(self):
self._model = MyCustomDistributedDataParallel(
self.model,
device_ids=...,
)
trainer = Trainer(strategy=CustomDDPStrategy(), accelerator="gpu", devices=2)
See Also:
- :ref:`accelerators/gpu:Multi GPU Training`.
- :doc:`Model Parallel GPU training guide <../advanced/model_parallel>`.
- :doc:`TPU training guide <../accelerators/tpu>`.
sync_batchnorm
^^^^^^^^^^^^^^
.. raw:: html
|
Enable synchronization between batchnorm layers across all GPUs.
.. testcode::
trainer = Trainer(sync_batchnorm=True)
track_grad_norm
^^^^^^^^^^^^^^^
.. raw:: html
|
- no tracking (-1)
- Otherwise tracks that norm (2 for 2-norm)
.. testcode::
# default used by the Trainer
trainer = Trainer(track_grad_norm=-1)
# track the 2-norm
trainer = Trainer(track_grad_norm=2)
.. _tpu_cores:
tpu_cores
^^^^^^^^^
.. raw:: html
|
- How many TPU cores to train on (1 or 8).
- Which TPU core to train on [1-8]
A single TPU v2 or v3 has 8 cores. A TPU pod has
up to 2048 cores. A slice of a POD means you get as many cores
as you request.
Your effective batch size is batch_size * total tpu cores.
This parameter can be either 1 or 8.
Example::
# your_trainer_file.py
# default used by the Trainer (ie: train on CPU)
trainer = Trainer(tpu_cores=None)
# int: train on a single core
trainer = Trainer(tpu_cores=1)
# list: train on a single selected core
trainer = Trainer(tpu_cores=[2])
# int: train on all cores few cores
trainer = Trainer(tpu_cores=8)
# for 8+ cores must submit via xla script with
# a max of 8 cores specified. The XLA script
# will duplicate script onto each TPU in the POD
trainer = Trainer(tpu_cores=8)
To train on more than 8 cores (ie: a POD),
submit this script using the xla_dist script.
Example::
python -m torch_xla.distributed.xla_dist
--tpu=$TPU_POD_NAME
--conda-env=torch-xla-nightly
--env=XLA_USE_BF16=1
-- python your_trainer_file.py
val_check_interval
^^^^^^^^^^^^^^^^^^
.. raw:: html
|
How often within one training epoch to check the validation set.
Can specify as float or int.
- pass a ``float`` in the range [0.0, 1.0] to check after a fraction of the training epoch.
- pass an ``int`` to check after a fixed number of training batches.
.. testcode::
# default used by the Trainer
trainer = Trainer(val_check_interval=1.0)
# check validation set 4 times during a training epoch
trainer = Trainer(val_check_interval=0.25)
# check validation set every 1000 training batches
# use this when using iterableDataset and your dataset has no length
# (ie: production cases with streaming data)
trainer = Trainer(val_check_interval=1000)
.. code-block:: python
# Here is the computation to estimate the total number of batches seen within an epoch.
# Find the total number of train batches
total_train_batches = total_train_samples // (train_batch_size * world_size)
# Compute how many times we will call validation during the training loop
val_check_batch = max(1, int(total_train_batches * val_check_interval))
val_checks_per_epoch = total_train_batches / val_check_batch
# Find the total number of validation batches
total_val_batches = total_val_samples // (val_batch_size * world_size)
# Total number of batches run
total_fit_batches = total_train_batches + total_val_batches
weights_save_path
^^^^^^^^^^^^^^^^^
.. warning:: `weights_save_path` has been deprecated in v1.6 and will be removed in v1.8. Please pass
``dirpath`` directly to the :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint`
callback.
.. raw:: html
|
Directory of where to save weights if specified.
.. testcode::
# default used by the Trainer
trainer = Trainer(weights_save_path=os.getcwd())
# save to your custom path
trainer = Trainer(weights_save_path="my/path")
Example::
# if checkpoint callback used, then overrides the weights path
# **NOTE: this saves weights to some/path NOT my/path
checkpoint = ModelCheckpoint(dirpath='some/path')
trainer = Trainer(
callbacks=[checkpoint],
weights_save_path='my/path'
)
weights_summary
^^^^^^^^^^^^^^^
.. warning:: `weights_summary` is deprecated in v1.5 and will be removed in v1.7. Please pass :class:`~pytorch_lightning.callbacks.model_summary.ModelSummary`
directly to the Trainer's ``callbacks`` argument instead. To disable the model summary,
pass ``enable_model_summary = False`` to the Trainer.
.. raw:: html
|
Prints a summary of the weights when training begins.
Options: 'full', 'top', None.
.. testcode::
# default used by the Trainer (ie: print summary of top level modules)
trainer = Trainer(weights_summary="top")
# print full summary of all modules and submodules
trainer = Trainer(weights_summary="full")
# don't print a summary
trainer = Trainer(weights_summary=None)
enable_model_summary
^^^^^^^^^^^^^^^^^^^^
Whether to enable or disable the model summarization. Defaults to True.
.. testcode::
# default used by the Trainer
trainer = Trainer(enable_model_summary=True)
# disable summarization
trainer = Trainer(enable_model_summary=False)
# enable custom summarization
from pytorch_lightning.callbacks import ModelSummary
trainer = Trainer(enable_model_summary=True, callbacks=[ModelSummary(max_depth=-1)])
-----
Trainer class API
-----------------
Methods
^^^^^^^
init
****
.. automethod:: pytorch_lightning.trainer.Trainer.__init__
:noindex:
fit
****
.. automethod:: pytorch_lightning.trainer.Trainer.fit
:noindex:
validate
********
.. automethod:: pytorch_lightning.trainer.Trainer.validate
:noindex:
test
****
.. automethod:: pytorch_lightning.trainer.Trainer.test
:noindex:
predict
*******
.. automethod:: pytorch_lightning.trainer.Trainer.predict
:noindex:
tune
****
.. automethod:: pytorch_lightning.trainer.Trainer.tune
:noindex:
Properties
^^^^^^^^^^
callback_metrics
****************
The metrics available to callbacks. These are automatically set when you log via `self.log`
.. code-block:: python
def training_step(self, batch, batch_idx):
self.log("a_val", 2)
callback_metrics = trainer.callback_metrics
assert callback_metrics["a_val"] == 2
current_epoch
*************
The number of epochs run.
.. code-block:: python
if trainer.current_epoch >= 10:
...
global_step
***********
The number of optimizer steps taken (does not reset each epoch).
This includes multiple optimizers and TBPTT steps (if enabled).
.. code-block:: python
if trainer.global_step >= 100:
...
logger
*******
The current logger being used. Here's an example using tensorboard
.. code-block:: python
logger = trainer.logger
tensorboard = logger.experiment
loggers
********
The list of loggers currently being used by the Trainer.
.. code-block:: python
# List of LightningLoggerBase objects
loggers = trainer.loggers
for logger in loggers:
logger.log_metrics({"foo": 1.0})
logged_metrics
**************
The metrics sent to the logger (visualizer).
.. code-block:: python
def training_step(self, batch, batch_idx):
self.log("a_val", 2, logger=True)
logged_metrics = trainer.logged_metrics
assert logged_metrics["a_val"] == 2
log_dir
*******
The directory for the current experiment. Use this to save images to, etc...
.. code-block:: python
def training_step(self, batch, batch_idx):
img = ...
save_img(img, self.trainer.log_dir)
is_global_zero
**************
Whether this process is the global zero in multi-node training
.. code-block:: python
def training_step(self, batch, batch_idx):
if self.trainer.is_global_zero:
print("in node 0, accelerator 0")
progress_bar_metrics
********************
The metrics sent to the progress bar.
.. code-block:: python
def training_step(self, batch, batch_idx):
self.log("a_val", 2, prog_bar=True)
progress_bar_metrics = trainer.progress_bar_metrics
assert progress_bar_metrics["a_val"] == 2
estimated_stepping_batches
**************************
Check out :meth:`~pytorch_lightning.trainer.trainer.Trainer.estimated_stepping_batches`.