.. testsetup:: * import torch from argparse import ArgumentParser, Namespace from pytorch_lightning.trainer.trainer import Trainer from pytorch_lightning.core.lightning import LightningModule import sys sys.argv = ["foo"] Hyperparameters --------------- Lightning has utilities to interact seamlessly with the command line ``ArgumentParser`` and plays well with the hyperparameter optimization framework of your choice. ---------- ArgumentParser ^^^^^^^^^^^^^^ Lightning is designed to augment a lot of the functionality of the built-in Python ArgumentParser .. testcode:: from argparse import ArgumentParser parser = ArgumentParser() parser.add_argument("--layer_1_dim", type=int, default=128) args = parser.parse_args() This allows you to call your program like so: .. code-block:: bash python trainer.py --layer_1_dim 64 ---------- Argparser Best Practices ^^^^^^^^^^^^^^^^^^^^^^^^ It is best practice to layer your arguments in three sections. 1. Trainer args (``accelerator``, ``devices``, ``num_nodes``, etc...) 2. Model specific arguments (``layer_dim``, ``num_layers``, ``learning_rate``, etc...) 3. Program arguments (``data_path``, ``cluster_email``, etc...) | We can do this as follows. First, in your ``LightningModule``, define the arguments specific to that module. Remember that data splits or data paths may also be specific to a module (i.e.: if your project has a model that trains on Imagenet and another on CIFAR-10). .. testcode:: class LitModel(LightningModule): @staticmethod def add_model_specific_args(parent_parser): parser = parent_parser.add_argument_group("LitModel") parser.add_argument("--encoder_layers", type=int, default=12) parser.add_argument("--data_path", type=str, default="/some/path") return parent_parser Now in your main trainer file, add the ``Trainer`` args, the program args, and add the model args .. testcode:: # ---------------- # trainer_main.py # ---------------- from argparse import ArgumentParser parser = ArgumentParser() # add PROGRAM level args parser.add_argument("--conda_env", type=str, default="some_name") parser.add_argument("--notification_email", type=str, default="will@email.com") # add model specific args parser = LitModel.add_model_specific_args(parser) # add all the available trainer options to argparse # ie: now --accelerator --devices --num_nodes ... --fast_dev_run all work in the cli parser = Trainer.add_argparse_args(parser) args = parser.parse_args() Now you can call run your program like so: .. code-block:: bash python trainer_main.py --accelerator 'gpu' --devices 2 --num_nodes 2 --conda_env 'my_env' --encoder_layers 12 Finally, make sure to start the training like so: .. code-block:: python # init the trainer like this trainer = Trainer.from_argparse_args(args, early_stopping_callback=...) # NOT like this trainer = Trainer(accelerator=hparams.accelerator, devices=hparams.devices, ...) # init the model with Namespace directly model = LitModel(args) # or init the model with all the key-value pairs dict_args = vars(args) model = LitModel(**dict_args) ---------- LightningModule hyperparameters ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Often times we train many versions of a model. You might share that model or come back to it a few months later at which point it is very useful to know how that model was trained (i.e.: what learning rate, neural network, etc...). Lightning has a standardized way of saving the information for you in checkpoints and YAML files. The goal here is to improve readability and reproducibility. save_hyperparameters """""""""""""""""""" Use :meth:`~pytorch_lightning.core.lightning.LightningModule.save_hyperparameters` within your :class:`~pytorch_lightning.core.lightning.LightningModule`'s ``__init__`` method. It will enable Lightning to store all the provided arguments under the ``self.hparams`` attribute. These hyperparameters will also be stored within the model checkpoint, which simplifies model re-instantiation after training. .. code-block:: python class LitMNIST(LightningModule): def __init__(self, layer_1_dim=128, learning_rate=1e-2): super().__init__() # call this to save (layer_1_dim=128, learning_rate=1e-4) to the checkpoint self.save_hyperparameters() # equivalent self.save_hyperparameters("layer_1_dim", "learning_rate") # Now possible to access layer_1_dim from hparams self.hparams.layer_1_dim In addition, loggers that support it will automatically log the contents of ``self.hparams``. Excluding hyperparameters """"""""""""""""""""""""" By default, every parameter of the ``__init__`` method will be considered a hyperparameter to the LightningModule. However, sometimes some parameters need to be excluded from saving, for example when they are not serializable. Those parameters should be provided back when reloading the LightningModule. In this case, exclude them explicitly: .. code-block:: python class LitMNIST(LightningModule): def __init__(self, loss_fx, generator_network, layer_1_dim=128): super().__init__() self.layer_1_dim = layer_1_dim self.loss_fx = loss_fx # call this to save only (layer_1_dim=128) to the checkpoint self.save_hyperparameters("layer_1_dim") # equivalent self.save_hyperparameters(ignore=["loss_fx", "generator_network"]) load_from_checkpoint """""""""""""""""""" LightningModules that have hyperparameters automatically saved with :meth:`~pytorch_lightning.core.lightning.LightningModule.save_hyperparameters` can conveniently be loaded and instantiated directly from a checkpoint with :meth:`~pytorch_lightning.core.lightning.LightningModule.load_from_checkpoint`: .. code-block:: python # to load specify the other args model = LitMNIST.load_from_checkpoint(PATH, loss_fx=torch.nn.SomeOtherLoss, generator_network=MyGenerator()) If parameters were excluded, they need to be provided at the time of loading: .. code-block:: python # the excluded parameters were `loss_fx` and `generator_network` model = LitMNIST.load_from_checkpoint(PATH, loss_fx=torch.nn.SomeOtherLoss, generator_network=MyGenerator()) ---------- Trainer args ^^^^^^^^^^^^ To recap, add ALL possible trainer flags to the argparser and init the ``Trainer`` this way .. code-block:: python parser = ArgumentParser() parser = Trainer.add_argparse_args(parser) hparams = parser.parse_args() trainer = Trainer.from_argparse_args(hparams) # or if you need to pass in callbacks trainer = Trainer.from_argparse_args(hparams, enable_checkpointing=..., callbacks=[...]) ---------- Multiple Lightning Modules ^^^^^^^^^^^^^^^^^^^^^^^^^^ We often have multiple Lightning Modules where each one has different arguments. Instead of polluting the ``main.py`` file, the ``LightningModule`` lets you define arguments for each one. .. testcode:: class LitMNIST(LightningModule): def __init__(self, layer_1_dim, **kwargs): super().__init__() self.layer_1 = nn.Linear(28 * 28, layer_1_dim) @staticmethod def add_model_specific_args(parent_parser): parser = parent_parser.add_argument_group("LitMNIST") parser.add_argument("--layer_1_dim", type=int, default=128) return parent_parser .. testcode:: class GoodGAN(LightningModule): def __init__(self, encoder_layers, **kwargs): super().__init__() self.encoder = Encoder(layers=encoder_layers) @staticmethod def add_model_specific_args(parent_parser): parser = parent_parser.add_argument_group("GoodGAN") parser.add_argument("--encoder_layers", type=int, default=12) return parent_parser Now we can allow each model to inject the arguments it needs in the ``main.py`` .. code-block:: python def main(args): dict_args = vars(args) # pick model if args.model_name == "gan": model = GoodGAN(**dict_args) elif args.model_name == "mnist": model = LitMNIST(**dict_args) trainer = Trainer.from_argparse_args(args) trainer.fit(model) if __name__ == "__main__": parser = ArgumentParser() parser = Trainer.add_argparse_args(parser) # figure out which model to use parser.add_argument("--model_name", type=str, default="gan", help="gan or mnist") # THIS LINE IS KEY TO PULL THE MODEL NAME temp_args, _ = parser.parse_known_args() # let the model add what it wants if temp_args.model_name == "gan": parser = GoodGAN.add_model_specific_args(parser) elif temp_args.model_name == "mnist": parser = LitMNIST.add_model_specific_args(parser) args = parser.parse_args() # train main(args) and now we can train MNIST or the GAN using the command line interface! .. code-block:: bash $ python main.py --model_name gan --encoder_layers 24 $ python main.py --model_name mnist --layer_1_dim 128