# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial from unittest.mock import Mock import pytest from pytorch_lightning import LightningDataModule, Trainer from pytorch_lightning.utilities.model_helpers import is_overridden from tests.helpers import BoringDataModule, BoringModel def test_is_overridden(): model = BoringModel() datamodule = BoringDataModule() # edge cases assert not is_overridden("whatever", None) with pytest.raises(ValueError, match="Expected a parent"): is_overridden("whatever", object()) assert not is_overridden("whatever", model) assert not is_overridden("whatever", model, parent=LightningDataModule) class TestModel(BoringModel): def foo(self): pass with pytest.raises(ValueError, match="The parent should define the method"): is_overridden("foo", TestModel()) # normal usage assert is_overridden("training_step", model) assert is_overridden("train_dataloader", datamodule) # `Mock` support mock = Mock(spec=BoringModel, wraps=model) assert is_overridden("training_step", mock) mock = Mock(spec=BoringDataModule, wraps=datamodule) assert is_overridden("train_dataloader", mock) # `partial` support model.training_step = partial(model.training_step) assert is_overridden("training_step", model) # `_PatchDataLoader.patch_loader_code` support class TestModel(BoringModel): def on_fit_start(self): assert is_overridden("train_dataloader", self) self.on_fit_start_called = True model = TestModel() trainer = Trainer(fast_dev_run=1) trainer.fit(model, train_dataloader=model.train_dataloader()) assert model.on_fit_start_called