# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Lightning implementation of Proximal Policy Optimization (PPO) Paper authors: John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov The example implements PPO compatible to work with any continous or discrete action-space environments via OpenAI Gym. To run the template, just run: `python reinforce_learn_ppo.py` References ---------- [1] https://github.com/openai/baselines/blob/master/baselines/ppo2/ppo2.py [2] https://github.com/openai/spinningup [3] https://github.com/sid-sundrani/ppo_lightning """ import argparse from typing import Callable, Iterable, List, Tuple import gym import torch from torch import nn from torch.distributions import Categorical, Normal from torch.optim.optimizer import Optimizer from torch.utils.data import DataLoader, IterableDataset import pytorch_lightning as pl from pl_examples import cli_lightning_logo def create_mlp(input_shape: Tuple[int], n_actions: int, hidden_size: int = 128): """ Simple Multi-Layer Perceptron network """ network = nn.Sequential( nn.Linear(input_shape[0], hidden_size), nn.ReLU(), nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Linear(hidden_size, n_actions), ) return network class ActorCategorical(nn.Module): """ Policy network, for discrete action spaces, which returns a distribution and an action given an observation """ def __init__(self, actor_net): """ Args: input_shape: observation shape of the environment n_actions: number of discrete actions available in the environment """ super().__init__() self.actor_net = actor_net def forward(self, states): logits = self.actor_net(states) pi = Categorical(logits=logits) actions = pi.sample() return pi, actions def get_log_prob(self, pi: Categorical, actions: torch.Tensor): """ Takes in a distribution and actions and returns log prob of actions under the distribution Args: pi: torch distribution actions: actions taken by distribution Returns: log probability of the acition under pi """ return pi.log_prob(actions) class ActorContinous(nn.Module): """ Policy network, for continous action spaces, which returns a distribution and an action given an observation """ def __init__(self, actor_net, act_dim): """ Args: input_shape: observation shape of the environment n_actions: number of discrete actions available in the environment """ super().__init__() self.actor_net = actor_net log_std = -0.5 * torch.ones(act_dim, dtype=torch.float) self.log_std = nn.Parameter(log_std) def forward(self, states): mu = self.actor_net(states) std = torch.exp(self.log_std) pi = Normal(loc=mu, scale=std) actions = pi.sample() return pi, actions def get_log_prob(self, pi: Normal, actions: torch.Tensor): """ Takes in a distribution and actions and returns log prob of actions under the distribution Args: pi: torch distribution actions: actions taken by distribution Returns: log probability of the acition under pi """ return pi.log_prob(actions).sum(axis=-1) class ExperienceSourceDataset(IterableDataset): """ Implementation from PyTorch Lightning Bolts: https://github.com/PyTorchLightning/pytorch-lightning-bolts/blob/master/pl_bolts/datamodules/experience_source.py Basic experience source dataset. Takes a generate_batch function that returns an iterator. The logic for the experience source and how the batch is generated is defined the Lightning model itself """ def __init__(self, generate_batch: Callable): self.generate_batch = generate_batch def __iter__(self) -> Iterable: iterator = self.generate_batch() return iterator class PPOLightning(pl.LightningModule): """ PyTorch Lightning implementation of PPO. Example: model = PPOLightning("CartPole-v0") Train: trainer = Trainer() trainer.fit(model) """ def __init__( self, env: str, gamma: float = 0.99, lam: float = 0.95, lr_actor: float = 3e-4, lr_critic: float = 1e-3, max_episode_len: float = 200, batch_size: int = 512, steps_per_epoch: int = 2048, nb_optim_iters: int = 4, clip_ratio: float = 0.2, **kwargs, ) -> None: """ Args: env: gym environment tag gamma: discount factor lam: advantage discount factor (lambda in the paper) lr_actor: learning rate of actor network lr_critic: learning rate of critic network max_episode_len: maximum number interactions (actions) in an episode batch_size: batch_size when training network- can simulate number of policy updates performed per epoch steps_per_epoch: how many action-state pairs to rollout for trajectory collection per epoch nb_optim_iters: how many steps of gradient descent to perform on each batch clip_ratio: hyperparameter for clipping in the policy objective """ super().__init__() # Hyperparameters self.lr_actor = lr_actor self.lr_critic = lr_critic self.steps_per_epoch = steps_per_epoch self.nb_optim_iters = nb_optim_iters self.batch_size = batch_size self.gamma = gamma self.lam = lam self.max_episode_len = max_episode_len self.clip_ratio = clip_ratio self.save_hyperparameters() self.env = gym.make(env) # value network self.critic = create_mlp(self.env.observation_space.shape, 1) # policy network (agent) if isinstance(self.env.action_space, gym.spaces.box.Box): act_dim = self.env.action_space.shape[0] actor_mlp = create_mlp(self.env.observation_space.shape, act_dim) self.actor = ActorContinous(actor_mlp, act_dim) elif isinstance(self.env.action_space, gym.spaces.discrete.Discrete): actor_mlp = create_mlp(self.env.observation_space.shape, self.env.action_space.n) self.actor = ActorCategorical(actor_mlp) else: raise NotImplementedError( 'Env action space should be of type Box (continous) or Discrete (categorical).' f' Got type: {type(self.env.action_space)}' ) self.batch_states = [] self.batch_actions = [] self.batch_adv = [] self.batch_qvals = [] self.batch_logp = [] self.ep_rewards = [] self.ep_values = [] self.epoch_rewards = [] self.episode_step = 0 self.avg_ep_reward = 0 self.avg_ep_len = 0 self.avg_reward = 0 self.state = torch.FloatTensor(self.env.reset()) def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Passes in a state x through the network and returns the policy and a sampled action Args: x: environment state Returns: Tuple of policy and action """ pi, action = self.actor(x) value = self.critic(x) return pi, action, value def discount_rewards(self, rewards: List[float], discount: float) -> List[float]: """Calculate the discounted rewards of all rewards in list Args: rewards: list of rewards/advantages Returns: list of discounted rewards/advantages """ assert isinstance(rewards[0], float) cumul_reward = [] sum_r = 0.0 for r in reversed(rewards): sum_r = (sum_r * discount) + r cumul_reward.append(sum_r) return list(reversed(cumul_reward)) def calc_advantage(self, rewards: List[float], values: List[float], last_value: float) -> List[float]: """Calculate the advantage given rewards, state values, and the last value of episode Args: rewards: list of episode rewards values: list of state values from critic last_value: value of last state of episode Returns: list of advantages """ rews = rewards + [last_value] vals = values + [last_value] # GAE delta = [rews[i] + self.gamma * vals[i + 1] - vals[i] for i in range(len(rews) - 1)] adv = self.discount_rewards(delta, self.gamma * self.lam) return adv def generate_trajectory_samples(self) -> Tuple[List[torch.Tensor], List[torch.Tensor], List[torch.Tensor]]: """ Contains the logic for generating trajectory data to train policy and value network Yield: Tuple of Lists containing tensors for states, actions, log probs, qvals and advantage """ for step in range(self.steps_per_epoch): self.state = self.state.to(device=self.device) with torch.no_grad(): pi, action, value = self(self.state) log_prob = self.actor.get_log_prob(pi, action) next_state, reward, done, _ = self.env.step(action.cpu().numpy()) self.episode_step += 1 self.batch_states.append(self.state) self.batch_actions.append(action) self.batch_logp.append(log_prob) self.ep_rewards.append(reward) self.ep_values.append(value.item()) self.state = torch.FloatTensor(next_state) epoch_end = step == (self.steps_per_epoch - 1) terminal = len(self.ep_rewards) == self.max_episode_len if epoch_end or done or terminal: # if trajectory ends abtruptly, boostrap value of next state if (terminal or epoch_end) and not done: self.state = self.state.to(device=self.device) with torch.no_grad(): _, _, value = self(self.state) last_value = value.item() steps_before_cutoff = self.episode_step else: last_value = 0 steps_before_cutoff = 0 # discounted cumulative reward self.batch_qvals += self.discount_rewards(self.ep_rewards + [last_value], self.gamma)[:-1] # advantage self.batch_adv += self.calc_advantage(self.ep_rewards, self.ep_values, last_value) # logs self.epoch_rewards.append(sum(self.ep_rewards)) # reset params self.ep_rewards = [] self.ep_values = [] self.episode_step = 0 self.state = torch.FloatTensor(self.env.reset()) if epoch_end: train_data = zip( self.batch_states, self.batch_actions, self.batch_logp, self.batch_qvals, self.batch_adv ) for state, action, logp_old, qval, adv in train_data: yield state, action, logp_old, qval, adv self.batch_states.clear() self.batch_actions.clear() self.batch_adv.clear() self.batch_logp.clear() self.batch_qvals.clear() # logging self.avg_reward = sum(self.epoch_rewards) / self.steps_per_epoch # if epoch ended abruptly, exlude last cut-short episode to prevent stats skewness epoch_rewards = self.epoch_rewards if not done: epoch_rewards = epoch_rewards[:-1] total_epoch_reward = sum(epoch_rewards) nb_episodes = len(epoch_rewards) self.avg_ep_reward = total_epoch_reward / nb_episodes self.avg_ep_len = (self.steps_per_epoch - steps_before_cutoff) / nb_episodes self.epoch_rewards.clear() def actor_loss(self, state, action, logp_old, qval, adv) -> torch.Tensor: pi, _ = self.actor(state) logp = self.actor.get_log_prob(pi, action) ratio = torch.exp(logp - logp_old) clip_adv = torch.clamp(ratio, 1 - self.clip_ratio, 1 + self.clip_ratio) * adv loss_actor = -(torch.min(ratio * adv, clip_adv)).mean() return loss_actor def critic_loss(self, state, action, logp_old, qval, adv) -> torch.Tensor: value = self.critic(state) loss_critic = (qval - value).pow(2).mean() return loss_critic def training_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx, optimizer_idx): """ Carries out a single update to actor and critic network from a batch of replay buffer. Args: batch: batch of replay buffer/trajectory data batch_idx: not used optimizer_idx: idx that controls optimizing actor or critic network Returns: loss """ state, action, old_logp, qval, adv = batch # normalize advantages adv = (adv - adv.mean()) / adv.std() self.log("avg_ep_len", self.avg_ep_len, prog_bar=True, on_step=False, on_epoch=True) self.log("avg_ep_reward", self.avg_ep_reward, prog_bar=True, on_step=False, on_epoch=True) self.log("avg_reward", self.avg_reward, prog_bar=True, on_step=False, on_epoch=True) if optimizer_idx == 0: loss_actor = self.actor_loss(state, action, old_logp, qval, adv) self.log('loss_actor', loss_actor, on_step=False, on_epoch=True, prog_bar=True, logger=True) return loss_actor elif optimizer_idx == 1: loss_critic = self.critic_loss(state, action, old_logp, qval, adv) self.log('loss_critic', loss_critic, on_step=False, on_epoch=True, prog_bar=False, logger=True) return loss_critic def configure_optimizers(self) -> List[Optimizer]: """ Initialize Adam optimizer""" optimizer_actor = torch.optim.Adam(self.actor.parameters(), lr=self.lr_actor) optimizer_critic = torch.optim.Adam(self.critic.parameters(), lr=self.lr_critic) return optimizer_actor, optimizer_critic def optimizer_step(self, *args, **kwargs): """ Run 'nb_optim_iters' number of iterations of gradient descent on actor and critic for each data sample. """ for _ in range(self.nb_optim_iters): super().optimizer_step(*args, **kwargs) def _dataloader(self) -> DataLoader: """Initialize the Replay Buffer dataset used for retrieving experiences""" dataset = ExperienceSourceDataset(self.generate_trajectory_samples) dataloader = DataLoader(dataset=dataset, batch_size=self.batch_size) return dataloader def train_dataloader(self) -> DataLoader: """Get train loader""" return self._dataloader() @staticmethod def add_model_specific_args(parent_parser): # pragma: no-cover parser = parent_parser.add_argument_group("PPOLightning") parser.add_argument("--env", type=str, default="CartPole-v0") parser.add_argument("--gamma", type=float, default=0.99, help="discount factor") parser.add_argument("--lam", type=float, default=0.95, help="advantage discount factor") parser.add_argument("--lr_actor", type=float, default=3e-4, help="learning rate of actor network") parser.add_argument("--lr_critic", type=float, default=1e-3, help="learning rate of critic network") parser.add_argument("--max_episode_len", type=int, default=1000, help="capacity of the replay buffer") parser.add_argument("--batch_size", type=int, default=512, help="batch_size when training network") parser.add_argument( "--steps_per_epoch", type=int, default=2048, help="how many action-state pairs to rollout for trajectory collection per epoch" ) parser.add_argument( "--nb_optim_iters", type=int, default=4, help="how many steps of gradient descent to perform on each batch" ) parser.add_argument( "--clip_ratio", type=float, default=0.2, help="hyperparameter for clipping in the policy objective" ) return parent_parser def main(args) -> None: model = PPOLightning(**vars(args)) trainer = pl.Trainer.from_argparse_args(args) trainer.fit(model) if __name__ == '__main__': cli_lightning_logo() pl.seed_everything(0) parent_parser = argparse.ArgumentParser(add_help=False) parent_parser = pl.Trainer.add_argparse_args(parent_parser) parser = PPOLightning.add_model_specific_args(parent_parser) args = parser.parse_args() main(args)