# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Union import pytest from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelSummary from pytorch_lightning.utilities import ModelSummaryMode from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.helpers.boring_model import BoringModel def test_model_summary_callback_present_trainer(): trainer = Trainer() assert any(isinstance(cb, ModelSummary) for cb in trainer.callbacks) trainer = Trainer(callbacks=ModelSummary()) assert any(isinstance(cb, ModelSummary) for cb in trainer.callbacks) def test_model_summary_callback_with_weights_summary_none(): trainer = Trainer(weights_summary=None) assert not any(isinstance(cb, ModelSummary) for cb in trainer.callbacks) def test_model_summary_callback_with_weights_summary(): trainer = Trainer(weights_summary="top") model_summary_callback = list(filter(lambda cb: isinstance(cb, ModelSummary), trainer.callbacks))[0] assert model_summary_callback._max_depth == 1 trainer = Trainer(weights_summary="full") model_summary_callback = list(filter(lambda cb: isinstance(cb, ModelSummary), trainer.callbacks))[0] assert model_summary_callback._max_depth == -1 with pytest.raises( MisconfigurationException, match=f"`weights_summary` can be None, {', '.join(list(ModelSummaryMode))}" ): _ = Trainer(weights_summary="invalid") def test_model_summary_callback_override_weights_summary_flag(): trainer = Trainer(callbacks=ModelSummary(), weights_summary=None) assert any(isinstance(cb, ModelSummary) for cb in trainer.callbacks) def test_custom_model_summary_callback_summarize(tmpdir): class CustomModelSummary(ModelSummary): @staticmethod def summarize( summary_data: List[List[Union[str, List[str]]]], total_parameters: int, trainable_parameters: int, model_size: float, ) -> None: assert summary_data[1][0] == "Name" assert summary_data[1][1][0] == "layer" assert summary_data[2][0] == "Type" assert summary_data[2][1][0] == "Linear" assert summary_data[3][0] == "Params" assert total_parameters == 66 assert trainable_parameters == 66 model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, callbacks=CustomModelSummary(), max_steps=1) trainer.fit(model)