import glob import logging as log import os import pytest import torch import tests.base.utils as tutils from pytorch_lightning import Trainer from pytorch_lightning.callbacks import ModelCheckpoint from pytorch_lightning.utilities.debugging import MisconfigurationException from tests.base import ( LightningTestModel, LightningTestModelWithoutHyperparametersArg, LightningTestModelWithUnusedHyperparametersArg ) def test_running_test_pretrained_model_ddp(tmpdir): """Verify `test()` on pretrained model.""" if not tutils.can_run_gpu_test(): return tutils.reset_seed() tutils.set_random_master_port() hparams = tutils.get_default_hparams() model = LightningTestModel(hparams) # exp file to get meta logger = tutils.get_default_testtube_logger(tmpdir, False) # exp file to get weights checkpoint = tutils.init_checkpoint_callback(logger) trainer_options = dict( show_progress_bar=False, max_epochs=1, train_percent_check=0.4, val_percent_check=0.2, checkpoint_callback=checkpoint, logger=logger, gpus=[0, 1], distributed_backend='ddp' ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) log.info(os.listdir(tutils.get_data_path(logger, path_dir=tmpdir))) # correct result and ok accuracy assert result == 1, 'training failed to complete' pretrained_model = tutils.load_model(logger, trainer.checkpoint_callback.dirpath, module_class=LightningTestModel) # run test set new_trainer = Trainer(**trainer_options) new_trainer.test(pretrained_model) dataloaders = model.test_dataloader() if not isinstance(dataloaders, list): dataloaders = [dataloaders] for dataloader in dataloaders: tutils.run_prediction(dataloader, pretrained_model) def test_running_test_pretrained_model(tmpdir): """Verify test() on pretrained model.""" tutils.reset_seed() hparams = tutils.get_default_hparams() model = LightningTestModel(hparams) # logger file to get meta logger = tutils.get_default_testtube_logger(tmpdir, False) # logger file to get weights checkpoint = tutils.init_checkpoint_callback(logger) trainer_options = dict( show_progress_bar=False, max_epochs=4, train_percent_check=0.4, val_percent_check=0.2, checkpoint_callback=checkpoint, logger=logger ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'training failed to complete' pretrained_model = tutils.load_model( logger, trainer.checkpoint_callback.dirpath, module_class=LightningTestModel ) new_trainer = Trainer(**trainer_options) new_trainer.test(pretrained_model) # test we have good test accuracy tutils.assert_ok_model_acc(new_trainer) def test_load_model_from_checkpoint(tmpdir): """Verify test() on pretrained model.""" tutils.reset_seed() hparams = tutils.get_default_hparams() model = LightningTestModel(hparams) trainer_options = dict( show_progress_bar=False, max_epochs=2, train_percent_check=0.4, val_percent_check=0.2, checkpoint_callback=ModelCheckpoint(tmpdir, save_top_k=-1), logger=False, default_save_path=tmpdir, ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) trainer.test() # correct result and ok accuracy assert result == 1, 'training failed to complete' # load last checkpoint last_checkpoint = sorted(glob.glob(os.path.join(trainer.checkpoint_callback.dirpath, "*.ckpt")))[-1] pretrained_model = LightningTestModel.load_from_checkpoint(last_checkpoint) # test that hparams loaded correctly for k, v in vars(hparams).items(): assert getattr(pretrained_model.hparams, k) == v # assert weights are the same for (old_name, old_p), (new_name, new_p) in zip(model.named_parameters(), pretrained_model.named_parameters()): assert torch.all(torch.eq(old_p, new_p)), 'loaded weights are not the same as the saved weights' new_trainer = Trainer(**trainer_options) new_trainer.test(pretrained_model) # test we have good test accuracy tutils.assert_ok_model_acc(new_trainer) def test_running_test_pretrained_model_dp(tmpdir): """Verify test() on pretrained model.""" tutils.reset_seed() if not tutils.can_run_gpu_test(): return hparams = tutils.get_default_hparams() model = LightningTestModel(hparams) # logger file to get meta logger = tutils.get_default_testtube_logger(tmpdir, False) # logger file to get weights checkpoint = tutils.init_checkpoint_callback(logger) trainer_options = dict( show_progress_bar=True, max_epochs=4, train_percent_check=0.4, val_percent_check=0.2, checkpoint_callback=checkpoint, logger=logger, gpus=[0, 1], distributed_backend='dp' ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # correct result and ok accuracy assert result == 1, 'training failed to complete' pretrained_model = tutils.load_model(logger, trainer.checkpoint_callback.dirpath, module_class=LightningTestModel) new_trainer = Trainer(**trainer_options) new_trainer.test(pretrained_model) # test we have good test accuracy tutils.assert_ok_model_acc(new_trainer) def test_dp_resume(tmpdir): """Make sure DP continues training correctly.""" if not tutils.can_run_gpu_test(): return tutils.reset_seed() hparams = tutils.get_default_hparams() model = LightningTestModel(hparams) trainer_options = dict( show_progress_bar=True, max_epochs=3, gpus=2, distributed_backend='dp', ) # get logger logger = tutils.get_default_testtube_logger(tmpdir, debug=False) # exp file to get weights # logger file to get weights checkpoint = tutils.init_checkpoint_callback(logger) # add these to the trainer options trainer_options['logger'] = logger trainer_options['checkpoint_callback'] = checkpoint # fit model trainer = Trainer(**trainer_options) trainer.is_slurm_managing_tasks = True result = trainer.fit(model) # track epoch before saving. Increment since we finished the current epoch, don't want to rerun real_global_epoch = trainer.current_epoch + 1 # correct result and ok accuracy assert result == 1, 'amp + dp model failed to complete' # --------------------------- # HPC LOAD/SAVE # --------------------------- # save trainer.hpc_save(tmpdir, logger) # init new trainer new_logger = tutils.get_default_testtube_logger(tmpdir, version=logger.version) trainer_options['logger'] = new_logger trainer_options['checkpoint_callback'] = ModelCheckpoint(tmpdir) trainer_options['train_percent_check'] = 0.5 trainer_options['val_percent_check'] = 0.2 trainer_options['max_epochs'] = 1 new_trainer = Trainer(**trainer_options) # set the epoch start hook so we can predict before the model does the full training def assert_good_acc(): assert new_trainer.current_epoch == real_global_epoch and new_trainer.current_epoch > 0 # if model and state loaded correctly, predictions will be good even though we # haven't trained with the new loaded model dp_model = new_trainer.model dp_model.eval() dataloader = trainer.train_dataloader tutils.run_prediction(dataloader, dp_model, dp=True) # new model model = LightningTestModel(hparams) model.on_train_start = assert_good_acc # fit new model which should load hpc weights new_trainer.fit(model) # test freeze on gpu model.freeze() model.unfreeze() def test_model_saving_loading(tmpdir): """Tests use case where trainer saves the model, and user loads it from tags independently.""" tutils.reset_seed() hparams = tutils.get_default_hparams() model = LightningTestModel(hparams) # logger file to get meta logger = tutils.get_default_testtube_logger(tmpdir, False) trainer_options = dict( max_epochs=1, logger=logger, checkpoint_callback=ModelCheckpoint(tmpdir) ) # fit model trainer = Trainer(**trainer_options) result = trainer.fit(model) # traning complete assert result == 1, 'amp + ddp model failed to complete' # make a prediction dataloaders = model.test_dataloader() if not isinstance(dataloaders, list): dataloaders = [dataloaders] for dataloader in dataloaders: for batch in dataloader: break x, y = batch x = x.view(x.size(0), -1) # generate preds before saving model model.eval() pred_before_saving = model(x) # save model new_weights_path = os.path.join(tmpdir, 'save_test.ckpt') trainer.save_checkpoint(new_weights_path) # load new model tags_path = tutils.get_data_path(logger, path_dir=tmpdir) tags_path = os.path.join(tags_path, 'meta_tags.csv') model_2 = LightningTestModel.load_from_checkpoint( checkpoint_path=new_weights_path, tags_csv=tags_path ) model_2.eval() # make prediction # assert that both predictions are the same new_pred = model_2(x) assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1 def test_load_model_with_missing_hparams(tmpdir): trainer_options = dict( show_progress_bar=False, max_epochs=1, checkpoint_callback=ModelCheckpoint(tmpdir, save_top_k=-1), logger=False, default_save_path=tmpdir, ) # fit model trainer = Trainer(**trainer_options) model = LightningTestModelWithoutHyperparametersArg() trainer.fit(model) last_checkpoint = sorted(glob.glob(os.path.join(trainer.checkpoint_callback.dirpath, "*.ckpt")))[-1] # try to load a checkpoint that has hparams but model is missing hparams arg with pytest.raises(MisconfigurationException, match=r".*__init__ is missing the argument 'hparams'.*"): LightningTestModelWithoutHyperparametersArg.load_from_checkpoint(last_checkpoint) # create a checkpoint without hyperparameters # if the model does not take a hparams argument, it should not throw an error ckpt = torch.load(last_checkpoint) del(ckpt['hparams']) torch.save(ckpt, last_checkpoint) LightningTestModelWithoutHyperparametersArg.load_from_checkpoint(last_checkpoint) # load checkpoint without hparams again # warn if user's model has hparams argument with pytest.warns(UserWarning, match=r".*Will pass in an empty Namespace instead."): LightningTestModelWithUnusedHyperparametersArg.load_from_checkpoint(last_checkpoint) # if __name__ == '__main__': # pytest.main([__file__])