# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import pytest import os from tests.base.boring_model import BoringModel from pytorch_lightning.callbacks import Callback from pytorch_lightning import accelerators, Trainer from pytorch_lightning.cluster_environments import SLURMEnvironment, TorchElasticEnvironment, ClusterEnvironment from unittest import mock def test_accelerator_choice_cpu(tmpdir): class CB(Callback): def on_fit_start(self, trainer, pl_module): assert isinstance(trainer.accelerator_backend, accelerators.CPUBackend) assert isinstance(trainer.accelerator_backend.cluster_environment, TorchElasticEnvironment) model = BoringModel() trainer = Trainer( fast_dev_run=True, callbacks=[CB()] ) trainer.fit(model) def test_accelerator_choice_ddp_cpu(tmpdir): class CB(Callback): def on_fit_start(self, trainer, pl_module): assert trainer.use_ddp assert isinstance(trainer.accelerator_backend, accelerators.DDPCPUSpawnBackend) assert isinstance(trainer.accelerator_backend.cluster_environment, TorchElasticEnvironment) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, distributed_backend='ddp_cpu', callbacks=[CB()] ) with pytest.raises(SystemExit): trainer.fit(model) @mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "0,1"}) @mock.patch('torch.cuda.device_count', return_value=2) def test_accelerator_choice_ddp(tmpdir): class CB(Callback): def on_fit_start(self, trainer, pl_module): assert trainer.use_ddp assert isinstance(trainer.accelerator_backend, accelerators.DDPBackend) assert isinstance(trainer.accelerator_backend.cluster_environment, TorchElasticEnvironment) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, distributed_backend='ddp', gpus=1, callbacks=[CB()] ) with pytest.raises(SystemExit): trainer.fit(model) @mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "0,1"}) @mock.patch('torch.cuda.device_count', return_value=2) def test_accelerator_choice_ddp_spawn(tmpdir): class CB(Callback): def on_fit_start(self, trainer, pl_module): assert trainer.use_ddp assert isinstance(trainer.accelerator_backend, accelerators.DDPSpawnBackend) assert isinstance(trainer.accelerator_backend.cluster_environment, TorchElasticEnvironment) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, distributed_backend='ddp_spawn', gpus=1, callbacks=[CB()] ) with pytest.raises(SystemExit): trainer.fit(model) @mock.patch.dict(os.environ, { "CUDA_VISIBLE_DEVICES": "0,1", "SLURM_NTASKS": "2", "SLURM_JOB_NAME": "SOME_NAME", "SLURM_NODEID": "0", "SLURM_LOCALID": "0" }) @mock.patch('torch.cuda.device_count', return_value=2) def test_accelerator_choice_ddp_slurm(tmpdir): class CB(Callback): def on_fit_start(self, trainer, pl_module): assert trainer.use_ddp assert isinstance(trainer.accelerator_backend, accelerators.DDPSLURMBackend) assert isinstance(trainer.accelerator_backend.cluster_environment, SLURMEnvironment) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, distributed_backend='ddp', gpus=2, callbacks=[CB()] ) with pytest.raises(SystemExit): trainer.fit(model) @mock.patch.dict(os.environ, { "CUDA_VISIBLE_DEVICES": "0,1", "SLURM_NTASKS": "2", "SLURM_JOB_NAME": "SOME_NAME", "SLURM_NODEID": "0", "LOCAL_RANK": "0", "SLURM_LOCALID": "0" }) @mock.patch('torch.cuda.device_count', return_value=2) def test_accelerator_choice_ddp2_slurm(tmpdir): class CB(Callback): def on_fit_start(self, trainer, pl_module): assert trainer.use_ddp2 assert isinstance(trainer.accelerator_backend, accelerators.DDP2Backend) assert isinstance(trainer.accelerator_backend.cluster_environment, SLURMEnvironment) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, distributed_backend='ddp2', gpus=2, callbacks=[CB()] ) with pytest.raises(SystemExit): trainer.fit(model) @mock.patch.dict(os.environ, { "CUDA_VISIBLE_DEVICES": "0,1", "WORLD_SIZE": "2", "LOCAL_RANK": "0", "NODE_RANK": "0" }) @mock.patch('torch.cuda.device_count', return_value=2) def test_accelerator_choice_ddp_te(tmpdir): class CB(Callback): def on_fit_start(self, trainer, pl_module): assert trainer.use_ddp assert isinstance(trainer.accelerator_backend, accelerators.DDPTorchElasticBackend) assert isinstance(trainer.accelerator_backend.cluster_environment, TorchElasticEnvironment) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, distributed_backend='ddp', gpus=2, callbacks=[CB()] ) with pytest.raises(SystemExit): trainer.fit(model) @mock.patch.dict(os.environ, { "CUDA_VISIBLE_DEVICES": "0,1", "WORLD_SIZE": "2", "LOCAL_RANK": "0", "NODE_RANK": "0" }) @mock.patch('torch.cuda.device_count', return_value=2) def test_accelerator_choice_ddp2_te(tmpdir): class CB(Callback): def on_fit_start(self, trainer, pl_module): assert trainer.use_ddp2 assert isinstance(trainer.accelerator_backend, accelerators.DDP2Backend) assert isinstance(trainer.accelerator_backend.cluster_environment, TorchElasticEnvironment) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, distributed_backend='ddp2', gpus=2, callbacks=[CB()] ) with pytest.raises(SystemExit): trainer.fit(model) @mock.patch.dict(os.environ, { "WORLD_SIZE": "1", "LOCAL_RANK": "0", "NODE_RANK": "0" }) @mock.patch('torch.cuda.device_count', return_value=0) def test_accelerator_choice_ddp_cpu_te(tmpdir): class CB(Callback): def on_fit_start(self, trainer, pl_module): assert trainer.use_ddp assert isinstance(trainer.accelerator_backend, accelerators.DDPCPUTorchElasticBackend) assert isinstance(trainer.accelerator_backend.cluster_environment, TorchElasticEnvironment) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, distributed_backend='ddp_cpu', num_processes=1, callbacks=[CB()] ) with pytest.raises(SystemExit): trainer.fit(model) @mock.patch.dict(os.environ, { "SLURM_NTASKS": "1", "SLURM_JOB_NAME": "SOME_NAME", "SLURM_NODEID": "0", "LOCAL_RANK": "0", "SLURM_LOCALID": "0" }) @mock.patch('torch.cuda.device_count', return_value=0) def test_accelerator_choice_ddp_cpu_slurm(tmpdir): class CB(Callback): def on_fit_start(self, trainer, pl_module): assert trainer.use_ddp assert isinstance(trainer.accelerator_backend, accelerators.DDPCPUSLURMBackend) assert isinstance(trainer.accelerator_backend.cluster_environment, SLURMEnvironment) raise SystemExit() model = BoringModel() trainer = Trainer( fast_dev_run=True, distributed_backend='ddp_cpu', num_processes=1, callbacks=[CB()] ) with pytest.raises(SystemExit): trainer.fit(model) @mock.patch.dict(os.environ, { "SLURM_NTASKS": "1", "SLURM_JOB_NAME": "SOME_NAME", "SLURM_NODEID": "0", "LOCAL_RANK": "0", "SLURM_LOCALID": "0" }) @mock.patch('torch.cuda.device_count', return_value=0) def test_accelerator_choice_ddp_cpu_custom_cluster(tmpdir): """ Test that we choose the custom cluster even when SLURM or TE flags are around """ class CustomCluster(ClusterEnvironment): def master_address(self): return 'asdf' class CB(Callback): def on_fit_start(self, trainer, pl_module): assert trainer.use_ddp assert isinstance(trainer.accelerator_backend, accelerators.DDPCPUSLURMBackend) assert isinstance(trainer.accelerator_backend.cluster_environment, CustomCluster) raise SystemExit() model = BoringModel() trainer = Trainer( plugins=[CustomCluster()], fast_dev_run=True, distributed_backend='ddp_cpu', num_processes=1, callbacks=[CB()] ) with pytest.raises(SystemExit): trainer.fit(model)