import logging as log import warnings import numpy as np from .base import Callback class EarlyStopping(Callback): r""" Stop training when a monitored quantity has stopped improving. Args: monitor (str): quantity to be monitored. Default: ``'val_loss'``. min_delta (float): minimum change in the monitored quantity to qualify as an improvement, i.e. an absolute change of less than `min_delta`, will count as no improvement. Default: ``0``. patience (int): number of epochs with no improvement after which training will be stopped. Default: ``0``. verbose (bool): verbosity mode. Default: ``False``. mode (str): one of {auto, min, max}. In `min` mode, training will stop when the quantity monitored has stopped decreasing; in `max` mode it will stop when the quantity monitored has stopped increasing; in `auto` mode, the direction is automatically inferred from the name of the monitored quantity. Default: ``'auto'``. strict (bool): whether to crash the training if `monitor` is not found in the metrics. Default: ``True``. Example:: from pytorch_lightning import Trainer from pytorch_lightning.callbacks import EarlyStopping early_stopping = EarlyStopping('val_loss') Trainer(early_stop_callback=early_stopping) """ def __init__(self, monitor: str = 'val_loss', min_delta: float = 0.0, patience: int = 0, verbose: bool = False, mode: str = 'auto', strict: bool = True): super().__init__() self.monitor = monitor self.patience = patience self.verbose = verbose self.strict = strict self.min_delta = min_delta self.wait = 0 self.stopped_epoch = 0 mode_dict = { 'min': np.less, 'max': np.greater, 'auto': np.greater if 'acc' in self.monitor else np.less } if mode not in mode_dict: if self.verbose > 0: log.info(f'EarlyStopping mode {mode} is unknown, fallback to auto mode.') mode = 'auto' self.monitor_op = mode_dict[mode] self.min_delta *= 1 if self.monitor_op == np.greater else -1 self.on_train_start(None, None) def check_metrics(self, logs): monitor_val = logs.get(self.monitor) error_msg = (f'Early stopping conditioned on metric `{self.monitor}`' f' which is not available. Available metrics are:' f' `{"`, `".join(list(logs.keys()))}`') if monitor_val is None: if self.strict: raise RuntimeError(error_msg) if self.verbose > 0: warnings.warn(error_msg, RuntimeWarning) return False return True def on_train_start(self, trainer, pl_module): # Allow instances to be re-used self.wait = 0 self.stopped_epoch = 0 self.best = np.Inf if self.monitor_op == np.less else -np.Inf def on_epoch_end(self, trainer, pl_module): logs = trainer.callback_metrics stop_training = False if not self.check_metrics(logs): return stop_training current = logs.get(self.monitor) if self.monitor_op(current - self.min_delta, self.best): self.best = current self.wait = 0 else: self.wait += 1 if self.wait >= self.patience: self.stopped_epoch = trainer.current_epoch stop_training = True self.on_train_end(trainer, pl_module) return stop_training def on_train_end(self, trainer, pl_module): if self.stopped_epoch > 0 and self.verbose > 0: warnings.warn('Displayed epoch numbers by `EarlyStopping` start from "1" until v0.6.x,' ' but will start from "0" in v0.8.0.', DeprecationWarning) log.info(f'Epoch {self.stopped_epoch + 1:05d}: early stopping')