{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "accelerator": "GPU", "colab": { "name": "06_cifar10_baseline.ipynb", "provenance": [], "collapsed_sections": [] }, "kernelspec": { "display_name": "Python 3", "name": "python3" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "qMDj0BYNECU8" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "metadata": { "id": "ECu0zDh8UXU8" }, "source": [ "# PyTorch Lightning CIFAR10 ~94% Baseline Tutorial ⚡\n", "\n", "Train a Resnet to 94% accuracy on Cifar10!\n", "\n", "Main takeaways:\n", "1. Experiment with different Learning Rate schedules and frequencies in the configure_optimizers method in pl.LightningModule\n", "2. Use an existing Resnet architecture with modifications directly with Lightning\n", "\n", "---\n", "\n", " - Give us a ⭐ [on Github](https://www.github.com/PytorchLightning/pytorch-lightning/)\n", " - Check out [the documentation](https://pytorch-lightning.readthedocs.io/en/latest/)\n", " - Join us [on Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A)" ] }, { "cell_type": "markdown", "metadata": { "id": "HYpMlx7apuHq" }, "source": [ "### Setup\n", "Lightning is easy to install. Simply `pip install pytorch-lightning`.\n", "Also check out [bolts](https://github.com/PyTorchLightning/pytorch-lightning-bolts/) for pre-existing data modules and models." ] }, { "cell_type": "code", "metadata": { "id": "ziAQCrE-TYWG" }, "source": [ "! pip install pytorch-lightning pytorch-lightning-bolts -qU" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "L-W_Gq2FORoU" }, "source": [ "# Run this if you intend to use TPUs\n", "# !curl https://raw.githubusercontent.com/pytorch/xla/master/contrib/scripts/env-setup.py -o pytorch-xla-env-setup.py\n", "# !python pytorch-xla-env-setup.py --version nightly --apt-packages libomp5 libopenblas-dev" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "wjov-2N_TgeS" }, "source": [ "import torch\n", "import torch.nn as nn\n", "import torch.nn.functional as F\n", "from torch.optim.lr_scheduler import OneCycleLR\n", "from torch.optim.swa_utils import AveragedModel, update_bn\n", "import torchvision\n", "\n", "import pytorch_lightning as pl\n", "from pytorch_lightning.callbacks import LearningRateMonitor\n", "from pytorch_lightning.metrics.functional import accuracy\n", "from pl_bolts.datamodules import CIFAR10DataModule\n", "from pl_bolts.transforms.dataset_normalizations import cifar10_normalization" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "54JMU1N-0y0g" }, "source": [ "pl.seed_everything(7);" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "FA90qwFcqIXR" }, "source": [ "### CIFAR10 Data Module\n", "\n", "Import the existing data module from `bolts` and modify the train and test transforms." ] }, { "cell_type": "code", "metadata": { "id": "S9e-W8CSa8nH" }, "source": [ "batch_size = 32\n", "\n", "train_transforms = torchvision.transforms.Compose([\n", " torchvision.transforms.RandomCrop(32, padding=4),\n", " torchvision.transforms.RandomHorizontalFlip(),\n", " torchvision.transforms.ToTensor(),\n", " cifar10_normalization(),\n", "])\n", "\n", "test_transforms = torchvision.transforms.Compose([\n", " torchvision.transforms.ToTensor(),\n", " cifar10_normalization(),\n", "])\n", "\n", "cifar10_dm = CIFAR10DataModule(\n", " batch_size=batch_size,\n", " train_transforms=train_transforms,\n", " test_transforms=test_transforms,\n", " val_transforms=test_transforms,\n", ")" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "SfCsutp3qUMc" }, "source": [ "### Resnet\n", "Modify the pre-existing Resnet architecture from TorchVision. The pre-existing architecture is based on ImageNet images (224x224) as input. So we need to modify it for CIFAR10 images (32x32)." ] }, { "cell_type": "code", "metadata": { "id": "GNSeJgwvhHp-" }, "source": [ "def create_model():\n", " model = torchvision.models.resnet18(pretrained=False, num_classes=10)\n", " model.conv1 = nn.Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", " model.maxpool = nn.Identity()\n", " return model" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "HUCj5TKsqty1" }, "source": [ "### Lightning Module\n", "Check out the [`configure_optimizers`](https://pytorch-lightning.readthedocs.io/en/stable/lightning_module.html#configure-optimizers) method to use custom Learning Rate schedulers. The OneCycleLR with SGD will get you to around 92-93% accuracy in 20-30 epochs and 93-94% accuracy in 40-50 epochs. Feel free to experiment with different LR schedules from https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate" ] }, { "cell_type": "code", "metadata": { "id": "03OMrBa5iGtT" }, "source": [ "class LitResnet(pl.LightningModule):\n", " def __init__(self, lr=0.05):\n", " super().__init__()\n", "\n", " self.save_hyperparameters()\n", " self.model = create_model()\n", "\n", " def forward(self, x):\n", " out = self.model(x)\n", " return F.log_softmax(out, dim=1)\n", "\n", " def training_step(self, batch, batch_idx):\n", " x, y = batch\n", " logits = F.log_softmax(self.model(x), dim=1)\n", " loss = F.nll_loss(logits, y)\n", " self.log('train_loss', loss)\n", " return loss\n", "\n", " def evaluate(self, batch, stage=None):\n", " x, y = batch\n", " logits = self(x)\n", " loss = F.nll_loss(logits, y)\n", " preds = torch.argmax(logits, dim=1)\n", " acc = accuracy(preds, y)\n", "\n", " if stage:\n", " self.log(f'{stage}_loss', loss, prog_bar=True)\n", " self.log(f'{stage}_acc', acc, prog_bar=True)\n", "\n", " def validation_step(self, batch, batch_idx):\n", " self.evaluate(batch, 'val')\n", "\n", " def test_step(self, batch, batch_idx):\n", " self.evaluate(batch, 'test')\n", "\n", " def configure_optimizers(self):\n", " optimizer = torch.optim.SGD(self.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)\n", " steps_per_epoch = 45000 // batch_size\n", " scheduler_dict = {\n", " 'scheduler': OneCycleLR(optimizer, 0.1, epochs=self.trainer.max_epochs, steps_per_epoch=steps_per_epoch),\n", " 'interval': 'step',\n", " }\n", " return {'optimizer': optimizer, 'lr_scheduler': scheduler_dict}" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "3FFPgpAFi9KU" }, "source": [ "model = LitResnet(lr=0.05)\n", "model.datamodule = cifar10_dm\n", "\n", "trainer = pl.Trainer(\n", " progress_bar_refresh_rate=20,\n", " max_epochs=40,\n", " gpus=1,\n", " logger=pl.loggers.TensorBoardLogger('lightning_logs/', name='resnet'),\n", " callbacks=[LearningRateMonitor(logging_interval='step')],\n", ")\n", "\n", "trainer.fit(model, cifar10_dm)\n", "trainer.test(model, datamodule=cifar10_dm);" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "lWL_WpeVIXWQ" }, "source": [ "### Bonus: Use [Stochastic Weight Averaging](https://arxiv.org/abs/1803.05407) to get a boost on performance\n", "\n", "Use SWA from torch.optim to get a quick performance boost. Also shows a couple of cool features from Lightning:\n", "- Use `training_epoch_end` to run code after the end of every epoch\n", "- Use a pretrained model directly with this wrapper for SWA" ] }, { "cell_type": "code", "metadata": { "id": "bsSwqKv0t9uY" }, "source": [ "class SWAResnet(LitResnet):\n", " def __init__(self, trained_model, lr=0.01):\n", " super().__init__()\n", "\n", " self.save_hyperparameters('lr')\n", " self.model = trained_model\n", " self.swa_model = AveragedModel(self.model)\n", "\n", " def forward(self, x):\n", " out = self.swa_model(x)\n", " return F.log_softmax(out, dim=1)\n", "\n", " def training_epoch_end(self, training_step_outputs):\n", " self.swa_model.update_parameters(self.model)\n", "\n", " def validation_step(self, batch, batch_idx, stage=None):\n", " x, y = batch\n", " logits = F.log_softmax(self.model(x), dim=1)\n", " loss = F.nll_loss(logits, y)\n", " preds = torch.argmax(logits, dim=1)\n", " acc = accuracy(preds, y)\n", "\n", " self.log(f'val_loss', loss, prog_bar=True)\n", " self.log(f'val_acc', acc, prog_bar=True)\n", "\n", " def configure_optimizers(self):\n", " optimizer = torch.optim.SGD(self.model.parameters(), lr=self.hparams.lr, momentum=0.9, weight_decay=5e-4)\n", " return optimizer\n", "\n", " def on_train_end(self):\n", " update_bn(self.datamodule.train_dataloader(), self.swa_model, device=self.device)" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "cA6ZG7C74rjL" }, "source": [ "swa_model = SWAResnet(model.model, lr=0.01)\n", "swa_model.datamodule = cifar10_dm\n", "\n", "swa_trainer = pl.Trainer(\n", " progress_bar_refresh_rate=20,\n", " max_epochs=20,\n", " gpus=1,\n", " logger=pl.loggers.TensorBoardLogger('lightning_logs/', name='swa_resnet'),\n", ")\n", "\n", "swa_trainer.fit(swa_model, cifar10_dm)\n", "swa_trainer.test(swa_model, datamodule=cifar10_dm);" ], "execution_count": null, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "RRHMfGiDpZ2M" }, "source": [ "# Start tensorboard.\n", "%reload_ext tensorboard\n", "%tensorboard --logdir lightning_logs/" ], "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "metadata": { "id": "RltpFGS-s0M1" }, "source": [ "\n", "

Congratulations - Time to Join the Community!

\n", "
\n", "\n", "Congratulations on completing this notebook tutorial! If you enjoyed this and would like to join the Lightning movement, you can do so in the following ways!\n", "\n", "### Star [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) on GitHub\n", "The easiest way to help our community is just by starring the GitHub repos! This helps raise awareness of the cool tools we're building.\n", "\n", "* Please, star [Lightning](https://github.com/PyTorchLightning/pytorch-lightning)\n", "\n", "### Join our [Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A)!\n", "The best way to keep up to date on the latest advancements is to join our community! Make sure to introduce yourself and share your interests in `#general` channel\n", "\n", "### Interested by SOTA AI models ! Check out [Bolt](https://github.com/PyTorchLightning/pytorch-lightning-bolts)\n", "Bolts has a collection of state-of-the-art models, all implemented in [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) and can be easily integrated within your own projects.\n", "\n", "* Please, star [Bolt](https://github.com/PyTorchLightning/pytorch-lightning-bolts)\n", "\n", "### Contributions !\n", "The best way to contribute to our community is to become a code contributor! At any time you can go to [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) or [Bolt](https://github.com/PyTorchLightning/pytorch-lightning-bolts) GitHub Issues page and filter for \"good first issue\". \n", "\n", "* [Lightning good first issue](https://github.com/PyTorchLightning/pytorch-lightning/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* [Bolt good first issue](https://github.com/PyTorchLightning/pytorch-lightning-bolts/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)\n", "* You can also contribute your own notebooks with useful examples !\n", "\n", "### Great thanks from the entire Pytorch Lightning Team for your interest !\n", "\n", "" ] } ] }