import os class InternalDebugger(object): def __init__(self, trainer): self.enabled = 'PL_DEV_DEBUG' in os.environ self.trainer = trainer self.logged_metrics = [] self.pbar_added_metrics = [] self.saved_losses = [] self.early_stopping_history = [] self.checkpoint_callback_history = [] def track_logged_metrics_history(self, scalar_metrics): if self.enabled: scalar_metrics['global_step'] = self.trainer.global_step self.logged_metrics.append(scalar_metrics) def track_train_loss_history(self, batch_idx, loss): if self.enabled: loss_dict = {'batch_idx': batch_idx, 'epoch': self.trainer.current_epoch, 'loss': loss.detach()} self.saved_losses.append(loss_dict) def track_pbar_metrics_history(self, metrics): if self.enabled: metrics['debug_epoch'] = self.trainer.current_epoch self.pbar_added_metrics.append(metrics) def track_early_stopping_history(self, current): if self.enabled: es = self.trainer.early_stop_callback debug_dict = { 'epoch': self.trainer.current_epoch, 'global_step': self.trainer.global_step, 'rank': self.trainer.global_rank, 'current': current, 'best': es.best_score, 'patience': es.wait_count } self.early_stopping_history.append(debug_dict) def track_checkpointing_history(self, filepath): if self.enabled: cb = self.trainer.checkpoint_callback debug_dict = { 'epoch': self.trainer.current_epoch, 'global_step': self.trainer.global_step, 'monitor': cb.monitor, 'rank': self.trainer.global_rank, 'filepath': filepath } self.checkpoint_callback_history.append(debug_dict)