.. testsetup:: * from pytorch_lightning.trainer.trainer import Trainer from pytorch_lightning.core.lightning import LightningModule Experiment Logging ================== Comet.ml ^^^^^^^^ `Comet.ml `_ is a third-party logger. To use :class:`~pytorch_lightning.loggers.CometLogger` as your logger do the following. First, install the package: .. code-block:: bash pip install comet-ml Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`: .. testcode:: import os from pytorch_lightning.loggers import CometLogger comet_logger = CometLogger( api_key=os.environ.get('COMET_API_KEY'), workspace=os.environ.get('COMET_WORKSPACE'), # Optional save_dir='.', # Optional project_name='default_project', # Optional rest_api_key=os.environ.get('COMET_REST_API_KEY'), # Optional experiment_name='default' # Optional ) trainer = Trainer(logger=comet_logger) The :class:`~pytorch_lightning.loggers.CometLogger` is available anywhere except ``__init__`` in your :class:`~pytorch_lightning.core.lightning.LightningModule`. .. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() self.logger.experiment.add_image('generated_images', some_img, 0) .. seealso:: :class:`~pytorch_lightning.loggers.CometLogger` docs. MLflow ^^^^^^ `MLflow `_ is a third-party logger. To use :class:`~pytorch_lightning.loggers.MLFlowLogger` as your logger do the following. First, install the package: .. code-block:: bash pip install mlflow Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`: .. testcode:: from pytorch_lightning.loggers import MLFlowLogger mlf_logger = MLFlowLogger( experiment_name="default", tracking_uri="file:./ml-runs" ) trainer = Trainer(logger=mlf_logger) .. seealso:: :class:`~pytorch_lightning.loggers.MLFlowLogger` docs. Neptune.ai ^^^^^^^^^^ `Neptune.ai `_ is a third-party logger. To use :class:`~pytorch_lightning.loggers.NeptuneLogger` as your logger do the following. First, install the package: .. code-block:: bash pip install neptune-client Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`: .. testcode:: from pytorch_lightning.loggers import NeptuneLogger neptune_logger = NeptuneLogger( api_key='ANONYMOUS', # replace with your own project_name='shared/pytorch-lightning-integration', experiment_name='default', # Optional, params={'max_epochs': 10}, # Optional, tags=['pytorch-lightning', 'mlp'], # Optional, ) trainer = Trainer(logger=neptune_logger) The :class:`~pytorch_lightning.loggers.NeptuneLogger` is available anywhere except ``__init__`` in your :class:`~pytorch_lightning.core.lightning.LightningModule`. .. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() self.logger.experiment.add_image('generated_images', some_img, 0) .. seealso:: :class:`~pytorch_lightning.loggers.NeptuneLogger` docs. allegro.ai TRAINS ^^^^^^^^^^^^^^^^^ `allegro.ai `_ is a third-party logger. To use :class:`~pytorch_lightning.loggers.TrainsLogger` as your logger do the following. First, install the package: .. code-block:: bash pip install trains Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`: .. testcode:: from pytorch_lightning.loggers import TrainsLogger trains_logger = TrainsLogger( project_name='examples', task_name='pytorch lightning test', ) trainer = Trainer(logger=trains_logger) .. testoutput:: :options: +ELLIPSIS, +NORMALIZE_WHITESPACE :hide: TRAINS Task: ... TRAINS results page: ... The :class:`~pytorch_lightning.loggers.TrainsLogger` is available anywhere in your :class:`~pytorch_lightning.core.lightning.LightningModule`. .. testcode:: class MyModule(LightningModule): def __init__(self): some_img = fake_image() self.logger.experiment.log_image('debug', 'generated_image_0', some_img, 0) .. seealso:: :class:`~pytorch_lightning.loggers.TrainsLogger` docs. Tensorboard ^^^^^^^^^^^ To use `TensorBoard `_ as your logger do the following. .. testcode:: from pytorch_lightning.loggers import TensorBoardLogger logger = TensorBoardLogger('tb_logs', name='my_model') trainer = Trainer(logger=logger) The :class:`~pytorch_lightning.loggers.TensorBoardLogger` is available anywhere except ``__init__`` in your :class:`~pytorch_lightning.core.lightning.LightningModule`. .. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() self.logger.experiment.add_image('generated_images', some_img, 0) .. seealso:: :class:`~pytorch_lightning.loggers.TensorBoardLogger` docs. Test Tube ^^^^^^^^^ `Test Tube `_ is a `TensorBoard `_ logger but with nicer file structure. To use :class:`~pytorch_lightning.loggers.TestTubeLogger` as your logger do the following. First, install the package: .. code-block:: bash pip install test_tube Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`: .. testcode:: from pytorch_lightning.loggers import TestTubeLogger logger = TestTubeLogger('tb_logs', name='my_model') trainer = Trainer(logger=logger) The :class:`~pytorch_lightning.loggers.TestTubeLogger` is available anywhere except ``__init__`` in your :class:`~pytorch_lightning.core.lightning.LightningModule`. .. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() self.logger.experiment.add_image('generated_images', some_img, 0) .. seealso:: :class:`~pytorch_lightning.loggers.TestTubeLogger` docs. Weights and Biases ^^^^^^^^^^^^^^^^^^ `Weights and Biases `_ is a third-party logger. To use :class:`~pytorch_lightning.loggers.WandbLogger` as your logger do the following. First, install the package: .. code-block:: bash pip install wandb Then configure the logger and pass it to the :class:`~pytorch_lightning.trainer.trainer.Trainer`: .. testcode:: from pytorch_lightning.loggers import WandbLogger wandb_logger = WandbLogger() trainer = Trainer(logger=wandb_logger) The :class:`~pytorch_lightning.loggers.WandbLogger` is available anywhere except ``__init__`` in your :class:`~pytorch_lightning.core.lightning.LightningModule`. .. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() self.logger.experiment.log({ "generated_images": [wandb.Image(some_img, caption="...")] }) .. seealso:: :class:`~pytorch_lightning.loggers.WandbLogger` docs. Multiple Loggers ^^^^^^^^^^^^^^^^ Lightning supports the use of multiple loggers, just pass a list to the :class:`~pytorch_lightning.trainer.trainer.Trainer`. .. testcode:: from pytorch_lightning.loggers import TensorBoardLogger, TestTubeLogger logger1 = TensorBoardLogger('tb_logs', name='my_model') logger2 = TestTubeLogger('tb_logs', name='my_model') trainer = Trainer(logger=[logger1, logger2]) The loggers are available as a list anywhere except ``__init__`` in your :class:`~pytorch_lightning.core.lightning.LightningModule`. .. testcode:: class MyModule(LightningModule): def any_lightning_module_function_or_hook(self): some_img = fake_image() # Option 1 self.logger.experiment[0].add_image('generated_images', some_img, 0) # Option 2 self.logger[0].experiment.add_image('generated_images', some_img, 0)