# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """General utilities.""" import importlib import operator import platform import sys from importlib.util import find_spec from typing import Callable import pkg_resources import torch from packaging.version import Version from pkg_resources import DistributionNotFound def _package_available(package_name: str) -> bool: """Check if a package is available in your environment. >>> _package_available('os') True >>> _package_available('bla') False """ try: return find_spec(package_name) is not None except ModuleNotFoundError: return False def _module_available(module_path: str) -> bool: """Check if a module path is available in your environment. >>> _module_available('os') True >>> _module_available('os.bla') False >>> _module_available('bla.bla') False """ module_names = module_path.split(".") if not _package_available(module_names[0]): return False try: importlib.import_module(module_path) except ImportError: return False return True def _compare_version(package: str, op: Callable, version: str, use_base_version: bool = False) -> bool: """Compare package version with some requirements. >>> _compare_version("torch", operator.ge, "0.1") True >>> _compare_version("does_not_exist", operator.ge, "0.0") False """ try: pkg = importlib.import_module(package) except (ImportError, DistributionNotFound): return False try: if hasattr(pkg, "__version__"): pkg_version = Version(pkg.__version__) else: # try pkg_resources to infer version pkg_version = Version(pkg_resources.get_distribution(package).version) except TypeError: # this is mocked by Sphinx, so it should return True to generate all summaries return True if use_base_version: pkg_version = Version(pkg_version.base_version) return op(pkg_version, Version(version)) _IS_WINDOWS = platform.system() == "Windows" _IS_INTERACTIVE = hasattr(sys, "ps1") # https://stackoverflow.com/a/64523765 _PYTHON_GREATER_EQUAL_3_8_0 = Version(platform.python_version()) >= Version("3.8.0") _TORCH_GREATER_EQUAL_1_8_1 = _compare_version("torch", operator.ge, "1.8.1") _TORCH_GREATER_EQUAL_1_9 = _compare_version("torch", operator.ge, "1.9.0") _TORCH_GREATER_EQUAL_1_9_1 = _compare_version("torch", operator.ge, "1.9.1") _TORCH_GREATER_EQUAL_1_10 = _compare_version("torch", operator.ge, "1.10.0") _TORCH_LESSER_EQUAL_1_10_2 = _compare_version("torch", operator.le, "1.10.2") _TORCH_GREATER_EQUAL_1_11 = _compare_version("torch", operator.ge, "1.11.0") _APEX_AVAILABLE = _module_available("apex.amp") _BAGUA_AVAILABLE = _package_available("bagua") _DEEPSPEED_AVAILABLE = _package_available("deepspeed") _DEEPSPEED_GREATER_EQUAL_0_5_9 = _DEEPSPEED_AVAILABLE and _compare_version("deepspeed", operator.ge, "0.5.9") _DEEPSPEED_GREATER_EQUAL_0_6 = _DEEPSPEED_AVAILABLE and _compare_version("deepspeed", operator.ge, "0.6.0") _DOCSTRING_PARSER_AVAILABLE = _package_available("docstring_parser") _FAIRSCALE_AVAILABLE = not _IS_WINDOWS and _module_available("fairscale.nn") _FAIRSCALE_OSS_FP16_BROADCAST_AVAILABLE = _FAIRSCALE_AVAILABLE and _compare_version("fairscale", operator.ge, "0.3.3") _FAIRSCALE_FULLY_SHARDED_AVAILABLE = _FAIRSCALE_AVAILABLE and _compare_version("fairscale", operator.ge, "0.3.4") _GROUP_AVAILABLE = not _IS_WINDOWS and _module_available("torch.distributed.group") _HOROVOD_AVAILABLE = _module_available("horovod.torch") _HYDRA_AVAILABLE = _package_available("hydra") _HYDRA_EXPERIMENTAL_AVAILABLE = _module_available("hydra.experimental") _JSONARGPARSE_AVAILABLE = _package_available("jsonargparse") and _compare_version("jsonargparse", operator.ge, "4.7.1") _KINETO_AVAILABLE = _TORCH_GREATER_EQUAL_1_8_1 and torch.profiler.kineto_available() _NEPTUNE_AVAILABLE = _package_available("neptune") _NEPTUNE_GREATER_EQUAL_0_9 = _NEPTUNE_AVAILABLE and _compare_version("neptune", operator.ge, "0.9.0") _OMEGACONF_AVAILABLE = _package_available("omegaconf") _POPTORCH_AVAILABLE = _package_available("poptorch") _HABANA_FRAMEWORK_AVAILABLE = _package_available("habana_frameworks") _RICH_AVAILABLE = _package_available("rich") and _compare_version("rich", operator.ge, "10.2.2") _TORCH_QUANTIZE_AVAILABLE = bool([eg for eg in torch.backends.quantized.supported_engines if eg != "none"]) _TORCHTEXT_AVAILABLE = _package_available("torchtext") _TORCHTEXT_LEGACY: bool = _TORCHTEXT_AVAILABLE and _compare_version("torchtext", operator.lt, "0.11.0") _TORCHVISION_AVAILABLE = _package_available("torchvision") _WANDB_AVAILABLE = _package_available("wandb") _WANDB_GREATER_EQUAL_0_10_22 = _WANDB_AVAILABLE and _compare_version("wandb", operator.ge, "0.10.22") _WANDB_GREATER_EQUAL_0_12_10 = _WANDB_AVAILABLE and _compare_version("wandb", operator.ge, "0.12.10") _XLA_AVAILABLE: bool = _package_available("torch_xla") from pytorch_lightning.utilities.xla_device import XLADeviceUtils # noqa: E402 _TPU_AVAILABLE = XLADeviceUtils.tpu_device_exists() if _POPTORCH_AVAILABLE: import poptorch _IPU_AVAILABLE = poptorch.ipuHardwareIsAvailable() else: _IPU_AVAILABLE = False if _HABANA_FRAMEWORK_AVAILABLE: from habana_frameworks.torch.utils.library_loader import is_habana_avaialble _HPU_AVAILABLE = is_habana_avaialble() else: _HPU_AVAILABLE = False # experimental feature within PyTorch Lightning. def _fault_tolerant_training() -> bool: from pytorch_lightning.utilities.enums import _FaultTolerantMode return _FaultTolerantMode.detect_current_mode().is_enabled