""" MAML - Accelerated with Lightning Fabric Adapted from https://github.com/learnables/learn2learn/blob/master/examples/vision/distributed_maml.py Original code author: Séb Arnold - learnables.net Based on the paper: https://arxiv.org/abs/1703.03400 Requirements: - lightning>=1.9.0 - learn2learn - cherry-rl - gym<=0.22 Run it with: fabric run train_fabric.py --accelerator=cuda --devices=2 --strategy=ddp """ import cherry import learn2learn as l2l import torch from lightning.fabric import Fabric, seed_everything def accuracy(predictions, targets): predictions = predictions.argmax(dim=1).view(targets.shape) return (predictions == targets).sum().float() / targets.size(0) def fast_adapt(batch, learner, loss, adaptation_steps, shots, ways): data, labels = batch # Separate data into adaptation/evalutation sets adaptation_indices = torch.zeros(data.size(0), dtype=bool) adaptation_indices[torch.arange(shots * ways) * 2] = True evaluation_indices = ~adaptation_indices adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices] evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices] # Adapt the model for step in range(adaptation_steps): train_error = loss(learner(adaptation_data), adaptation_labels) learner.adapt(train_error) # Evaluate the adapted model predictions = learner(evaluation_data) valid_error = loss(predictions, evaluation_labels) valid_accuracy = accuracy(predictions, evaluation_labels) return valid_error, valid_accuracy def main( ways=5, shots=5, meta_lr=0.003, fast_lr=0.5, meta_batch_size=32, adaptation_steps=1, num_iterations=60000, seed=42, ): # Create the Fabric object # Arguments get parsed from the command line, see `fabric run --help` fabric = Fabric() meta_batch_size = meta_batch_size // fabric.world_size seed_everything(seed + fabric.global_rank) # Create Tasksets using the benchmark interface tasksets = l2l.vision.benchmarks.get_tasksets( # 'mini-imagenet' works too, but you need to download it manually due to license restrictions of ImageNet "omniglot", train_ways=ways, train_samples=2 * shots, test_ways=ways, test_samples=2 * shots, num_tasks=20000, root="data", ) # Create model # model = l2l.vision.models.MiniImagenetCNN(ways) model = l2l.vision.models.OmniglotFC(28**2, ways) model = fabric.to_device(model) maml = l2l.algorithms.MAML(model, lr=fast_lr, first_order=False) optimizer = torch.optim.Adam(maml.parameters(), meta_lr) optimizer = cherry.optim.Distributed(maml.parameters(), opt=optimizer, sync=1) # model, optimizer = fabric.setup(model, optimizer) optimizer.sync_parameters() loss = torch.nn.CrossEntropyLoss(reduction="mean") for iteration in range(num_iterations): optimizer.zero_grad() meta_train_error = 0.0 meta_train_accuracy = 0.0 meta_valid_error = 0.0 meta_valid_accuracy = 0.0 for task in range(meta_batch_size): # Compute meta-training loss learner = maml.clone() batch = fabric.to_device(tasksets.train.sample()) evaluation_error, evaluation_accuracy = fast_adapt( batch, learner, loss, adaptation_steps, shots, ways, ) fabric.backward(evaluation_error) meta_train_error += evaluation_error.item() meta_train_accuracy += evaluation_accuracy.item() # Compute meta-validation loss learner = maml.clone() batch = fabric.to_device(tasksets.validation.sample()) evaluation_error, evaluation_accuracy = fast_adapt( batch, learner, loss, adaptation_steps, shots, ways, ) meta_valid_error += evaluation_error.item() meta_valid_accuracy += evaluation_accuracy.item() # Print some metrics fabric.print("\n") fabric.print("Iteration", iteration) fabric.print("Meta Train Error", meta_train_error / meta_batch_size) fabric.print("Meta Train Accuracy", meta_train_accuracy / meta_batch_size) fabric.print("Meta Valid Error", meta_valid_error / meta_batch_size) fabric.print("Meta Valid Accuracy", meta_valid_accuracy / meta_batch_size) # Average the accumulated gradients and optimize for p in maml.parameters(): p.grad.data.mul_(1.0 / meta_batch_size) optimizer.step() # averages gradients across all workers meta_test_error = 0.0 meta_test_accuracy = 0.0 for task in range(meta_batch_size): # Compute meta-testing loss learner = maml.clone() batch = fabric.to_device(tasksets.test.sample()) evaluation_error, evaluation_accuracy = fast_adapt( batch, learner, loss, adaptation_steps, shots, ways, ) meta_test_error += evaluation_error.item() meta_test_accuracy += evaluation_accuracy.item() fabric.print("Meta Test Error", meta_test_error / meta_batch_size) fabric.print("Meta Test Accuracy", meta_test_accuracy / meta_batch_size) if __name__ == "__main__": main()