# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from copy import deepcopy import torch from lightning_fabric import Fabric from pytorch_lightning.demos.boring_classes import BoringModel, ManualOptimBoringModel def test_fabric_boring_lightning_module_automatic(): """Test that basic LightningModules written for 'automatic optimization' work with Fabric.""" fabric = Fabric(accelerator="cpu", devices=1) module = BoringModel() parameters_before = deepcopy(list(module.parameters())) optimizers, _ = module.configure_optimizers() dataloader = module.train_dataloader() model, optimizer = fabric.setup(module, optimizers[0]) dataloader = fabric.setup_dataloaders(dataloader) batch = next(iter(dataloader)) output = model.training_step(batch, 0) fabric.backward(output["loss"]) optimizer.step() assert all(not torch.equal(before, after) for before, after in zip(parameters_before, model.parameters())) def test_fabric_boring_lightning_module_manual(): """Test that basic LightningModules written for 'manual optimization' work with Fabric.""" fabric = Fabric(accelerator="cpu", devices=1) module = ManualOptimBoringModel() parameters_before = deepcopy(list(module.parameters())) optimizers, _ = module.configure_optimizers() dataloader = module.train_dataloader() model, optimizer = fabric.setup(module, optimizers[0]) dataloader = fabric.setup_dataloaders(dataloader) batch = next(iter(dataloader)) model.training_step(batch, 0) # .backward() and optimizer.step() happen inside training_step() assert all(not torch.equal(before, after) for before, after in zip(parameters_before, model.parameters()))