# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from tests_fabric.helpers.runif import RunIf from lightning_fabric.accelerators.mps import MPSAccelerator from lightning_fabric.utilities.exceptions import MisconfigurationException _MAYBE_MPS = "mps" if MPSAccelerator.is_available() else "cpu" # torch.device(mps) only works on torch>=1.12 def test_auto_device_count(): assert MPSAccelerator.auto_device_count() == 1 @RunIf(mps=True) def test_mps_availability(): assert MPSAccelerator.is_available() def test_init_device_with_wrong_device_type(): with pytest.raises(ValueError, match="Device should be MPS"): MPSAccelerator().setup_device(torch.device("cpu")) @RunIf(mps=True) @pytest.mark.parametrize( "devices,expected", [ (1, [torch.device(_MAYBE_MPS, 0)]), ([0], [torch.device(_MAYBE_MPS, 0)]), ("1", [torch.device(_MAYBE_MPS, 0)]), ("0,", [torch.device(_MAYBE_MPS, 0)]), ], ) def test_get_parallel_devices(devices, expected): assert MPSAccelerator.get_parallel_devices(devices) == expected @RunIf(mps=True) @pytest.mark.parametrize("devices", [2, [0, 2], "2", "0,2"]) def test_get_parallel_devices_invalid_request(devices): with pytest.raises(MisconfigurationException, match="But your machine only has"): MPSAccelerator.get_parallel_devices(devices)