# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from lightning.fabric.utilities.apply_func import convert_tensors_to_scalars, move_data_to_device from torch import Tensor @pytest.mark.parametrize("should_return", [False, True]) def test_wrongly_implemented_transferable_data_type(should_return): class TensorObject: def __init__(self, tensor: Tensor, should_return: bool = True): self.tensor = tensor self.should_return = should_return def to(self, device): self.tensor.to(device) # simulate a user forgets to return self if self.should_return: return self return None tensor = torch.tensor(0.1) obj = TensorObject(tensor, should_return) assert obj == move_data_to_device(obj, torch.device("cpu")) def test_convert_tensors_to_scalars(): assert convert_tensors_to_scalars("string") == "string" assert convert_tensors_to_scalars(1) == 1 assert convert_tensors_to_scalars(True) is True assert convert_tensors_to_scalars({"scalar": 1.0}) == {"scalar": 1.0} result = convert_tensors_to_scalars({"tensor": torch.tensor(2.0)}) # note: `==` comparison as above is not sufficient, since `torch.tensor(x) == x` evaluates to truth assert not isinstance(result["tensor"], Tensor) assert result["tensor"] == 2.0 data = {"tensor": torch.tensor([2.0])} result = convert_tensors_to_scalars(data) assert not isinstance(result["tensor"], Tensor) assert result["tensor"] == 2.0 assert isinstance(data["tensor"], Tensor) assert data["tensor"] == 2.0 with pytest.raises(ValueError, match="does not contain a single element"): convert_tensors_to_scalars({"tensor": torch.tensor([1, 2, 3])})