# Copyright The Lightning AI team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock from unittest.mock import MagicMock, Mock import pytest import torch from lightning.fabric import Fabric from lightning.fabric.strategies import DataParallelStrategy from tests_fabric.helpers.runif import RunIf from tests_fabric.strategies.test_single_device import _run_test_clip_gradients def test_data_parallel_root_device(): strategy = DataParallelStrategy() strategy.parallel_devices = [torch.device("cuda", 2), torch.device("cuda", 0), torch.device("cuda", 1)] assert strategy.root_device == torch.device("cuda", 2) def test_data_parallel_ranks(): strategy = DataParallelStrategy() assert strategy.world_size == 1 assert strategy.local_rank == 0 assert strategy.global_rank == 0 assert strategy.is_global_zero @mock.patch("lightning.fabric.strategies.dp.DataParallel") def test_data_parallel_setup_module(data_parallel_mock): strategy = DataParallelStrategy() strategy.parallel_devices = [0, 2, 1] module = torch.nn.Linear(2, 2) wrapped_module = strategy.setup_module(module) assert wrapped_module == data_parallel_mock(module=module, device_ids=[0, 2, 1]) def test_data_parallel_module_to_device(): strategy = DataParallelStrategy() strategy.parallel_devices = [torch.device("cuda", 2)] module = Mock() strategy.module_to_device(module) module.to.assert_called_with(torch.device("cuda", 2)) def test_dp_module_state_dict(): """Test that the module state dict gets retrieved without the prefixed wrapper keys from DP.""" class DataParallelMock(MagicMock): def __instancecheck__(self, instance): # to make the strategy's `isinstance(model, DataParallel)` pass with a mock as class return True strategy = DataParallelStrategy(parallel_devices=[torch.device("cpu"), torch.device("cpu")]) # Without DP applied (no setup call) original_module = torch.nn.Linear(2, 3) assert strategy.get_module_state_dict(original_module).keys() == original_module.state_dict().keys() # With DP applied (setup called) with mock.patch("lightning.fabric.strategies.dp.DataParallel", DataParallelMock): wrapped_module = strategy.setup_module(original_module) assert strategy.get_module_state_dict(wrapped_module).keys() == original_module.state_dict().keys() @pytest.mark.filterwarnings("ignore::FutureWarning") @pytest.mark.parametrize( "precision", [ "32-true", "16-mixed", pytest.param("bf16-mixed", marks=RunIf(bf16_cuda=True)), ], ) @pytest.mark.parametrize("clip_type", ["norm", "val"]) @RunIf(min_cuda_gpus=2) def test_clip_gradients(clip_type, precision): if clip_type == "norm" and precision == "16-mixed": pytest.skip(reason="Clipping by norm with 16-mixed is numerically unstable.") fabric = Fabric(accelerator="cuda", devices=2, precision=precision, strategy="dp") fabric.launch() _run_test_clip_gradients(fabric=fabric, clip_type=clip_type)