import torch import numpy as np from copy import deepcopy class PretrainedEmbedding(torch.nn.Embedding): def __init__(self, embedding_path, embedding_dim, task_vocab, freeze=True, *args, **kwargs): """ Loads a prebuilt pytorch embedding from any embedding formated file. Padding=0 by default. >>> emb = PretrainedEmbedding(embedding_path='glove.840B.300d.txt',embedding_dim=300, task_vocab={'hello': 1, 'world': 2}) >>> data = torch.Tensor([[0, 1], [0, 2]]).long() >>> embedded = emb(data) tensor([[[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000], [ 0.2523, 0.1018, -0.6748, ..., 0.1787, -0.5192, 0.3359]], [[ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000], [-0.0067, 0.2224, 0.2771, ..., 0.0594, 0.0014, 0.0987]]]) :param embedding_path: :param emb_dim: :param task_vocab: :param freeze: :return: """ # count the vocab self.vocab_size = max(task_vocab.values()) + 1 super(PretrainedEmbedding, self).__init__(self.vocab_size, embedding_dim, padding_idx=0, *args, **kwargs) # load pretrained embeddings new_emb = self.__load_task_specific_embeddings(deepcopy(task_vocab), embedding_path, embedding_dim, freeze) # transfer weights self.weight = new_emb.weight # apply freeze self.weight.requires_grad = not freeze def __load_task_specific_embeddings(self, vocab_words, embedding_path, emb_dim, freeze): """ Iterates embedding file to only pull out task specific embeddings :param vocab_words: :param embedding_path: :param emb_dim: :param freeze: :return: """ # holds final embeddings for relevant words embeddings = np.zeros(shape=(self.vocab_size, emb_dim)) # load embedding line by line and extract relevant embeddings with open(embedding_path, encoding='utf-8') as f: for line in f: tokens = line.split(' ') word = tokens[0] embedding = tokens[1:] embedding[-1] = embedding[-1][:-1] # remove last new line if word in vocab_words: vocab_word_i = vocab_words[word] # skip words that try to overwrite pad idx if vocab_word_i == 0: del vocab_words[word] continue emb_vals = np.asarray([float(x) for x in embedding]) embeddings[vocab_word_i] = emb_vals # remove vocab word to early terminate del vocab_words[word] # early break if len(vocab_words) == 0: break # add random vectors for the non-pretrained words # these are vocab words NOT found in the pretrained embeddings for w, i in vocab_words.items(): # skip words that try to overwrite pad idx if i == 0: continue embedding = np.random.normal(size=emb_dim) embeddings[i] = embedding # turn into pt embedding embeddings = torch.FloatTensor(embeddings) embeddings = torch.nn.Embedding.from_pretrained(embeddings, freeze=freeze) return embeddings if __name__ == '__main__': emb = PretrainedEmbedding( embedding_path='/Users/waf/Developer/NGV/research-fermat/fermat/.vector_cache/glove.840B.300d.txt', embedding_dim=300, task_vocab={'hello': 1, 'world': 2} ) data = torch.Tensor([[0, 1], [0, 2]]).long() embedded = emb(data) print(embedded)