# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import warnings from functools import wraps from typing import Any, Optional, Union import torch log = logging.getLogger(__name__) if torch.distributed.is_available(): from torch.distributed import group, ReduceOp else: class ReduceOp: SUM = None class group: WORLD = None def rank_zero_only(fn): @wraps(fn) def wrapped_fn(*args, **kwargs): if rank_zero_only.rank == 0: return fn(*args, **kwargs) return wrapped_fn # add the attribute to the function but don't overwrite in case Trainer has already set it rank_zero_only.rank = getattr(rank_zero_only, 'rank', int(os.environ.get('LOCAL_RANK', 0))) def _warn(*args, **kwargs): warnings.warn(*args, **kwargs) def _info(*args, **kwargs): log.info(*args, **kwargs) def _debug(*args, **kwargs): log.debug(*args, **kwargs) rank_zero_debug = rank_zero_only(_debug) rank_zero_info = rank_zero_only(_info) rank_zero_warn = rank_zero_only(_warn) def gather_all_tensors(result: Union[torch.Tensor], group: Optional[Any] = None): """ Function to gather all tensors from several ddp processes onto a list that is broadcasted to all processes Args: result: the value to sync group: the process group to gather results from. Defaults to all processes (world) Return: gathered_result: list with size equal to the process group where gathered_result[i] corresponds to result tensor from process i """ if group is None: group = torch.distributed.group.WORLD # convert tensors to contiguous format result = result.contiguous() world_size = torch.distributed.get_world_size(group) gathered_result = [torch.zeros_like(result) for _ in range(world_size)] # sync and broadcast all torch.distributed.barrier(group=group) torch.distributed.all_gather(gathered_result, result, group) return gathered_result def sync_ddp_if_available( result: Union[torch.Tensor], group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = None ) -> torch.Tensor: """ Function to reduce a tensor across worker processes during distributed training Args: result: the value to sync and reduce (typically tensor or number) group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to sum. Can also be a string of 'avg', 'mean' to calculate the mean during reduction. Return: reduced value """ if torch.distributed.is_available() and torch.distributed.is_initialized(): return sync_ddp(result, group=group, reduce_op=reduce_op) return result def sync_ddp( result: Union[torch.Tensor], group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = None ) -> torch.Tensor: """ Function to reduce the tensors from several ddp processes to one master process Args: result: the value to sync and reduce (typically tensor or number) group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to sum. Can also be a string of 'avg', 'mean' to calculate the mean during reduction. Return: reduced value """ divide_by_world_size = False if group is None: group = torch.distributed.group.WORLD op = reduce_op if isinstance(reduce_op, ReduceOp) else ReduceOp.SUM if isinstance(reduce_op, str) and reduce_op.lower() in ("avg", "mean"): divide_by_world_size = True # sync all processes before reduction torch.distributed.barrier(group=group) torch.distributed.all_reduce(result, op=op, group=group, async_op=False) if divide_by_world_size: result = result / torch.distributed.get_world_size(group) return result class AllGatherGrad(torch.autograd.Function): @staticmethod def forward(ctx, tensor, group=group.WORLD): ctx.group = group gathered_tensor = [torch.zeros_like(tensor) for _ in range(torch.distributed.get_world_size())] torch.distributed.all_gather(gathered_tensor, tensor, group=group) gathered_tensor = torch.stack(gathered_tensor, dim=0) return gathered_tensor @staticmethod def backward(ctx, *grad_output): grad_output = torch.cat(grad_output) torch.distributed.all_reduce(grad_output, op=torch.distributed.ReduceOp.SUM, async_op=False, group=ctx.group) return grad_output[torch.distributed.get_rank()] def all_gather_ddp_if_available( tensor: Union[torch.Tensor], group: Optional[Any] = None, sync_grads: bool = False ) -> torch.Tensor: """ Function to gather a tensor from several distributed processes Args: tensor: tensor of shape (batch, ...) group: the process group to gather results from. Defaults to all processes (world) sync_grads: flag that allows users to synchronize gradients for all_gather op Return: A tensor of shape (world_size, batch, ...) """ group = group if group is not None else torch.distributed.group.WORLD if torch.distributed.is_available() and torch.distributed.is_initialized(): if sync_grads: return AllGatherGrad.apply(tensor, group) else: with torch.no_grad(): return AllGatherGrad.apply(tensor, group) return tensor