# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Callable from torch.optim import Optimizer import pytorch_lightning as pl from pytorch_lightning.accelerators.accelerator import Accelerator from pytorch_lightning.plugins.precision import MixedPrecisionPlugin from pytorch_lightning.plugins.training_type.single_tpu import SingleTPUPlugin from pytorch_lightning.plugins.training_type.tpu_spawn import TPUSpawnPlugin from pytorch_lightning.utilities import _TORCH_GREATER_EQUAL_1_5, _XLA_AVAILABLE from pytorch_lightning.utilities.exceptions import MisconfigurationException if _XLA_AVAILABLE: import torch_xla.core.xla_model as xm # the patch is not required after 1.5.0 if _TORCH_GREATER_EQUAL_1_5: from torch_xla._patched_functions import _apply_patches _apply_patches() # patches `torch.nn.utils.clip_grad_norm_` class TPUAccelerator(Accelerator): """ Accelerator for TPU devices. """ def setup(self, trainer: 'pl.Trainer', model: 'pl.LightningModule') -> None: """ Raises: MisconfigurationException: If AMP is used with TPU, or if TPUs are not using a single TPU core or TPU spawn training. """ if isinstance(self.precision_plugin, MixedPrecisionPlugin): raise MisconfigurationException( "amp + tpu is not supported. Only bfloats are supported on TPU. Consider using TPUHalfPrecisionPlugin" ) if not isinstance(self.training_type_plugin, (SingleTPUPlugin, TPUSpawnPlugin)): raise MisconfigurationException("TPUs only support a single tpu core or tpu spawn training.") return super().setup(trainer, model) def run_optimizer_step( self, optimizer: Optimizer, optimizer_idx: int, lambda_closure: Callable, **kwargs: Any ) -> None: xm.optimizer_step(optimizer, optimizer_args={'closure': lambda_closure, **kwargs})