# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os from functools import wraps from platform import python_version from typing import Any, Callable, List, Optional, Tuple, Union import torch from torch.nn.parallel.distributed import DistributedDataParallel from pytorch_lightning.utilities.imports import _TORCH_GREATER_EQUAL_1_8, _TORCH_GREATER_EQUAL_1_9, _TPU_AVAILABLE if _TPU_AVAILABLE: import torch_xla.core.xla_model as xm if torch.distributed.is_available(): from torch.distributed import group, ReduceOp else: class ReduceOp: # type: ignore # (see https://github.com/python/mypy/issues/1153) SUM = None class group: # type: ignore WORLD = None log = logging.getLogger(__name__) def rank_zero_only(fn: Callable) -> Callable: @wraps(fn) def wrapped_fn(*args: Any, **kwargs: Any) -> Optional[Any]: if rank_zero_only.rank == 0: return fn(*args, **kwargs) return None return wrapped_fn # TODO: this should be part of the cluster environment def _get_rank() -> int: rank_keys = ("RANK", "SLURM_PROCID", "LOCAL_RANK") for key in rank_keys: rank = os.environ.get(key) if rank is not None: return int(rank) return 0 # add the attribute to the function but don't overwrite in case Trainer has already set it rank_zero_only.rank = getattr(rank_zero_only, "rank", _get_rank()) def rank_zero_warn(*args: Any, stacklevel: int = 5, **kwargs: Any) -> None: from pytorch_lightning.utilities.warnings import rank_zero_deprecation, rank_zero_warn rank_zero_deprecation( "`pytorch_lightning.utilities.distributed.rank_zero_warn` has been moved to" " `pytorch_lightning.utilities.rank_zero_warn` in v1.3.7 and will be removed in v1.6" ) return rank_zero_warn(*args, stacklevel=stacklevel, **kwargs) def rank_zero_deprecation(*args: Any, stacklevel: int = 5, **kwargs: Any) -> None: from pytorch_lightning.utilities.warnings import rank_zero_deprecation rank_zero_deprecation( "`pytorch_lightning.utilities.distributed.rank_zero_deprecation` has been moved to" " `pytorch_lightning.utilities.rank_zero_deprecation` in v1.3.7 and will be removed in v1.6" ) return rank_zero_deprecation(*args, stacklevel=stacklevel, **kwargs) def _info(*args: Any, stacklevel: int = 2, **kwargs: Any) -> None: if python_version() >= "3.8.0": kwargs["stacklevel"] = stacklevel log.info(*args, **kwargs) def _debug(*args: Any, stacklevel: int = 2, **kwargs: Any) -> None: if python_version() >= "3.8.0": kwargs["stacklevel"] = stacklevel log.debug(*args, **kwargs) @rank_zero_only def rank_zero_debug(*args: Any, stacklevel: int = 4, **kwargs: Any) -> None: _debug(*args, stacklevel=stacklevel, **kwargs) @rank_zero_only def rank_zero_info(*args: Any, stacklevel: int = 4, **kwargs: Any) -> None: _info(*args, stacklevel=stacklevel, **kwargs) def gather_all_tensors(result: torch.Tensor, group: Optional[Any] = None) -> List[torch.Tensor]: """ Function to gather all tensors from several ddp processes onto a list that is broadcasted to all processes Args: result: the value to sync group: the process group to gather results from. Defaults to all processes (world) Return: gathered_result: list with size equal to the process group where gathered_result[i] corresponds to result tensor from process i """ if group is None: group = torch.distributed.group.WORLD # convert tensors to contiguous format result = result.contiguous() world_size = torch.distributed.get_world_size(group) gathered_result = [torch.zeros_like(result) for _ in range(world_size)] # sync and broadcast all torch.distributed.barrier(group=group) torch.distributed.all_gather(gathered_result, result, group) return gathered_result def distributed_available() -> bool: return torch.distributed.is_available() and torch.distributed.is_initialized() or tpu_distributed() def sync_ddp_if_available( result: torch.Tensor, group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = None ) -> torch.Tensor: """ Function to reduce a tensor across worker processes during distributed training Args: result: the value to sync and reduce (typically tensor or number) group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to sum. Can also be a string of 'avg', 'mean' to calculate the mean during reduction. Return: reduced value """ if distributed_available(): return sync_ddp(result, group=group, reduce_op=reduce_op) return result def sync_ddp( result: torch.Tensor, group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = None ) -> torch.Tensor: """ Function to reduce the tensors from several ddp processes to one master process Args: result: the value to sync and reduce (typically tensor or number) group: the process group to gather results from. Defaults to all processes (world) reduce_op: the reduction operation. Defaults to sum. Can also be a string of 'avg', 'mean' to calculate the mean during reduction. Return: reduced value """ divide_by_world_size = False if group is None: group = torch.distributed.group.WORLD op = reduce_op if isinstance(reduce_op, ReduceOp) else ReduceOp.SUM if isinstance(reduce_op, str) and reduce_op.lower() in ("avg", "mean"): divide_by_world_size = True # sync all processes before reduction torch.distributed.barrier(group=group) torch.distributed.all_reduce(result, op=op, group=group, async_op=False) if divide_by_world_size: result = result / torch.distributed.get_world_size(group) return result class AllGatherGrad(torch.autograd.Function): @staticmethod def forward( ctx: Any, tensor: torch.Tensor, group: Optional["torch.distributed.ProcessGroup"] = group.WORLD, ) -> torch.Tensor: ctx.group = group gathered_tensor = [torch.zeros_like(tensor) for _ in range(torch.distributed.get_world_size())] torch.distributed.all_gather(gathered_tensor, tensor, group=group) gathered_tensor = torch.stack(gathered_tensor, dim=0) return gathered_tensor @staticmethod def backward(ctx: Any, *grad_output: torch.Tensor) -> Tuple[torch.Tensor, None]: grad_output = torch.cat(grad_output) torch.distributed.all_reduce(grad_output, op=torch.distributed.ReduceOp.SUM, async_op=False, group=ctx.group) return grad_output[torch.distributed.get_rank()], None def all_gather_ddp_if_available( tensor: torch.Tensor, group: Optional["torch.distributed.ProcessGroup"] = None, sync_grads: bool = False ) -> torch.Tensor: """ Function to gather a tensor from several distributed processes Args: tensor: tensor of shape (batch, ...) group: the process group to gather results from. Defaults to all processes (world) sync_grads: flag that allows users to synchronize gradients for all_gather op Return: A tensor of shape (world_size, batch, ...) """ group = group if group is not None else torch.distributed.group.WORLD if distributed_available(): if sync_grads: return AllGatherGrad.apply(tensor, group) with torch.no_grad(): return AllGatherGrad.apply(tensor, group) return tensor def register_ddp_comm_hook( model: DistributedDataParallel, ddp_comm_state: Optional[object] = None, ddp_comm_hook: Optional[Callable] = None, ddp_comm_wrapper: Optional[Callable] = None, ) -> None: """ Function to register communication hook for DDP model https://pytorch.org/docs/master/ddp_comm_hooks.html Args: model: DDP model ddp_comm_state: state is passed to the hook and can be used to maintain and update any state information that users would like to maintain as part of the training process. Examples: error feedback in gradient compression, peers to communicate with next in GossipGrad etc. ddp_comm_hook: hook(state: object, bucket: dist._GradBucket) -> torch.futures.Future This callable function is called once the bucket is ready. The hook can perform whatever processing is needed and return a Future indicating completion of any async work (ex: allreduce). If the hook doesn't perform any communication, it can also just return a completed Future. The Future should hold the new value of grad bucket's tensors. Once a bucket is ready, c10d reducer would call this hook and use the tensors returned by the Future and copy grads to individual parameters. ddp_comm_wrapper: communication hook wraper to support a communication hook such as FP16 compression as wrapper, which could be combined with ddp_comm_hook .. warning :: DDP communication hook needs pytorch version at least 1.8.0 .. warning :: DDP communication wrapper needs pytorch version at least 1.9.0 Example: from torch.distributed.algorithms.ddp_comm_hooks import ( default_hooks as default, powerSGD_hook as powerSGD, ) # fp16_compress_hook for compress gradients register_ddp_comm_hook( model=ddp_model, ddp_comm_hook=default.fp16_compress_hook, ) # powerSGD_hook register_ddp_comm_hook( model=ddp_model, ddp_comm_state=powerSGD.PowerSGDState( process_group=None, matrix_approximation_rank=1, start_powerSGD_iter=5000, ), ddp_comm_hook=powerSGD.powerSGD_hook, ) # fp16_compress_wrapper combined with other communication hook register_ddp_comm_hook( model=ddp_model, ddp_comm_state=powerSGD.PowerSGDState( process_group=None, matrix_approximation_rank=1, start_powerSGD_iter=5000, ), ddp_comm_hook=powerSGD.powerSGD_hook, ddp_comm_wrapper=default.fp16_compress_wrapper, ) """ from pytorch_lightning.utilities import rank_zero_warn if not _TORCH_GREATER_EQUAL_1_8: rank_zero_warn("Not registering DDP comm hook. To use communication hooks, please use pytorch>=1.8.0.") return if ddp_comm_hook is None: return # inform mypy that ddp_comm_hook is callable ddp_comm_hook: Callable = ddp_comm_hook if ddp_comm_wrapper is not None: if not _TORCH_GREATER_EQUAL_1_9: rank_zero_warn("Not applying DDP comm wrapper. To use communication wrapper, please use pytorch>=1.9.0.") else: rank_zero_info( f"DDP comm wrapper is provided, apply {ddp_comm_wrapper.__qualname__}({ddp_comm_hook.__qualname__})." ) ddp_comm_hook = ddp_comm_wrapper(ddp_comm_hook) rank_zero_debug(f"Registering DDP comm hook: {ddp_comm_hook.__qualname__}.") model.register_comm_hook(state=ddp_comm_state, hook=ddp_comm_hook) def tpu_distributed() -> bool: return _TPU_AVAILABLE and xm.xrt_world_size() > 1