# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Any, List, Tuple import torch.nn as nn from torch.optim import Optimizer from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin class TPUHalfPrecisionPlugin(PrecisionPlugin): """Plugin that enables bfloats on TPUs""" precision: int = 16 def connect( self, model: nn.Module, optimizers: List[Optimizer], lr_schedulers: List[Any] ) -> Tuple[nn.Module, List[Optimizer], List[Any]]: os.environ["XLA_USE_BF16"] = str(1) return super().connect(model=model, optimizers=optimizers, lr_schedulers=lr_schedulers)