import logging import pickle import torch from pytorch_lightning.utilities.imports import _TORCH_GREATER_EQUAL_1_8 log = logging.getLogger(__name__) if torch.distributed.is_available(): from torch.distributed import Backend, broadcast, get_backend, get_rank, GroupMember # The code underneath is taken from PyTorch `torch/distributed/distributed_c10d.py` # and enable broadcasting for PyTorch 1.6 and lower. # https://github.com/pytorch/pytorch/blob/1.7/torch/distributed/distributed_c10d.py#L160 def _rank_not_in_group(group): """ Helper that checks if the current process's rank is not in a given group. """ if group is None: return False return group == GroupMember.NON_GROUP_MEMBER # Taken from https://github.com/pytorch/pytorch/blob/1.7/torch/distributed/distributed_c10d.py#L1164 def _object_to_tensor(obj): buffer = pickle.dumps(obj) byte_storage = torch.ByteStorage.from_buffer(buffer) # type: ignore[attr-defined] byte_tensor = torch.ByteTensor(byte_storage) local_size = torch.LongTensor([byte_tensor.numel()]) return byte_tensor, local_size # Taken from https://github.com/pytorch/pytorch/blob/1.7/torch/distributed/distributed_c10d.py def _tensor_to_object(tensor, tensor_size): buf = tensor.numpy().tobytes()[:tensor_size] out = pickle.loads(buf) return out # Taken from https://github.com/pytorch/pytorch/blob/1.7/torch/distributed/distributed_c10d.py#L1327 def _broadcast_object_list(object_list, src=0, group=None): if _rank_not_in_group(group): return my_rank = get_rank() # Serialize object_list elements to tensors on src rank. if my_rank == src: tensor_list, size_list = zip(*(_object_to_tensor(obj) for obj in object_list)) object_sizes_tensor = torch.cat(size_list) else: object_sizes_tensor = torch.LongTensor(len(object_list)) group_backend = get_backend(group) is_nccl_backend = group_backend == Backend.NCCL current_device = torch.device("cpu") if is_nccl_backend: # See note about using torch.cuda.current_device() here in docstring. # We cannot simply use my_rank since rank == device is not necessarily # true. current_device = torch.device("cuda", torch.cuda.current_device()) object_sizes_tensor = object_sizes_tensor.to(current_device) object_sizes_tensor = object_sizes_tensor.to(current_device) # Broadcast object sizes broadcast(object_sizes_tensor, src=src, group=group) # Concatenate and broadcast serialized object tensors if my_rank == src: object_tensor = torch.cat(tensor_list) else: object_tensor = torch.ByteTensor(torch.sum(object_sizes_tensor).item()) if is_nccl_backend: object_tensor = object_tensor.to(current_device) broadcast(object_tensor, src=src, group=group) # Deserialize objects using their stored sizes. offset = 0 if my_rank != src: for i, obj_size in enumerate(object_sizes_tensor): obj_view = object_tensor[offset : offset + obj_size] obj_view = obj_view.type(torch.ByteTensor) # type: ignore[call-overload] offset += obj_size object_list[i] = _tensor_to_object(obj_view, obj_size) if not torch.distributed.is_available(): # avoid failures on early PyTorch versions for Windows where # not all functions used in `broadcast_object_list` are available. def _broadcast_noop(obj, *_, **__): return obj broadcast_object_list = _broadcast_noop elif _TORCH_GREATER_EQUAL_1_8: from torch.distributed.distributed_c10d import broadcast_object_list else: broadcast_object_list = _broadcast_object_list