# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r""" Gradient Accumulator ==================== Change gradient accumulation factor according to scheduling. Trainer also calls ``optimizer.step()`` for the last indivisible step number. """ from typing import Dict from pytorch_lightning.callbacks.base import Callback class GradientAccumulationScheduler(Callback): r""" Change gradient accumulation factor according to scheduling. Args: scheduling: scheduling in format {epoch: accumulation_factor} Example:: >>> from pytorch_lightning import Trainer >>> from pytorch_lightning.callbacks import GradientAccumulationScheduler # at epoch 5 start accumulating every 2 batches >>> accumulator = GradientAccumulationScheduler(scheduling={5: 2}) >>> trainer = Trainer(callbacks=[accumulator]) # alternatively, pass the scheduling dict directly to the Trainer >>> trainer = Trainer(accumulate_grad_batches={5: 2}) """ def __init__(self, scheduling: Dict[int, int]): super().__init__() if not scheduling: # empty dict error raise TypeError("Empty dict cannot be interpreted correct") for key in scheduling: if not isinstance(key, int) or not isinstance(scheduling[key], int): raise TypeError("All epoches and accumulation factor must be integers") minimal_epoch = min(scheduling.keys()) if minimal_epoch < 0: raise IndexError( f"Epochs indexing from 1, epoch {minimal_epoch} cannot be interpreted correct" ) if minimal_epoch != 0: # if user didnt define first epoch accumulation factor scheduling.update({0: 1}) self.scheduling = scheduling self.epochs = sorted(scheduling.keys()) def on_epoch_start(self, trainer, pl_module): epoch = trainer.current_epoch for i in reversed(range(len(self.epochs))): if epoch >= self.epochs[i]: trainer.accumulate_grad_batches = self.scheduling.get(self.epochs[i]) break