# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest.mock import Mock import pytest import torch import torch.distributed as dist from torch import nn from torch.optim import Adam, SGD from pytorch_lightning import Trainer from pytorch_lightning.loggers import TensorBoardLogger from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.helpers import BoringModel from tests.helpers.runif import RunIf def test_property_current_epoch(): """Test that the current_epoch in LightningModule is accessible via the Trainer.""" model = BoringModel() assert model.current_epoch == 0 trainer = Mock(current_epoch=123) model.trainer = trainer assert model.current_epoch == 123 def test_property_global_step(): """Test that the global_step in LightningModule is accessible via the Trainer.""" model = BoringModel() assert model.global_step == 0 trainer = Mock(global_step=123) model.trainer = trainer assert model.global_step == 123 def test_property_global_rank(): """Test that the global rank in LightningModule is accessible via the Trainer.""" model = BoringModel() assert model.global_rank == 0 trainer = Mock(global_rank=123) model.trainer = trainer assert model.global_rank == 123 def test_property_local_rank(): """Test that the local rank in LightningModule is accessible via the Trainer.""" model = BoringModel() assert model.local_rank == 0 trainer = Mock(local_rank=123) model.trainer = trainer assert model.local_rank == 123 def test_property_logger(tmpdir): """Test that the logger in LightningModule is accessible via the Trainer.""" model = BoringModel() assert model.logger is None logger = TensorBoardLogger(tmpdir) trainer = Mock(logger=logger) model.trainer = trainer assert model.logger == logger def test_params_groups_and_state_are_accessible(tmpdir): class TestModel(BoringModel): def training_step(self, batch, batch_idx, optimizer_idx): output = self.layer(batch) loss = self.loss(batch, output) return {"loss": loss} def configure_optimizers(self): optimizer = SGD(self.layer.parameters(), lr=0.1) optimizer_2 = Adam(self.layer.parameters(), lr=0.1) return [optimizer, optimizer_2] def optimizer_step( self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure, on_tpu=False, using_native_amp=False, using_lbfgs=False, ): # warm up lr if self.trainer.global_step < 500: lr_scale = min(1.0, float(self.trainer.global_step + 1) / 500.0) for pg in optimizer.param_groups: pg["lr"] = lr_scale * 0.01 optimizer.step(closure=optimizer_closure) model = TestModel() model.training_epoch_end = None trainer = Trainer( max_epochs=1, default_root_dir=tmpdir, limit_train_batches=8, limit_val_batches=1, accumulate_grad_batches=1 ) trainer.fit(model) def test_toggle_untoggle_2_optimizers_no_shared_parameters(tmpdir): class TestModel(BoringModel): def training_step(self, batch, batch_idx, optimizer_idx=None): return super().training_step(batch, batch_idx) def __init__(self): super().__init__() self.layer_1 = nn.Sequential(nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32)) self.layer_2 = nn.Sequential( nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 2) ) # set some weights to False to check untoggle works as expected. self.layer_1[2].weight.requires_grad = False self.layer_1[4].weight.requires_grad = False self.layer_2[1].weight.requires_grad = False self.layer_2[3].weight.requires_grad = False def configure_optimizers(self): optimizer = SGD(self.layer_1.parameters(), lr=0.1) optimizer_2 = Adam(self.layer_2.parameters(), lr=0.1) return [optimizer, optimizer_2] def optimizer_step( self, current_epoch, batch_nb, optimizer, optimizer_idx, closure, on_tpu=False, using_native_amp=False, using_lbfgs=False, ): if optimizer_idx == 0: assert self.layer_1[0].weight.requires_grad is True assert self.layer_1[2].weight.requires_grad is False assert self.layer_1[4].weight.requires_grad is False assert self.layer_2[1].weight.requires_grad is False assert self.layer_2[3].weight.requires_grad is False assert self.layer_2[5].weight.requires_grad is False if optimizer_idx == 1: assert self.layer_1[0].weight.requires_grad is False assert self.layer_1[2].weight.requires_grad is False assert self.layer_1[4].weight.requires_grad is False assert self.layer_2[1].weight.requires_grad is False assert self.layer_2[3].weight.requires_grad is False assert self.layer_2[5].weight.requires_grad is True optimizer.step(closure=closure) model = TestModel() model.training_epoch_end = None trainer = Trainer( max_epochs=1, default_root_dir=tmpdir, limit_train_batches=8, accumulate_grad_batches=2, limit_val_batches=0 ) trainer.fit(model) def test_toggle_untoggle_3_optimizers_shared_parameters(tmpdir): class TestModel(BoringModel): def __init__(self): super().__init__() self.layer_1 = nn.Sequential(nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32)) self.layer_2 = nn.Sequential( nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 2) ) self.layer_3 = nn.Sequential( nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 32), nn.ReLU(), nn.Linear(32, 2) ) # set some weights to False to check untoggle works as expected. self.layer_1[2].weight.requires_grad = False self.layer_1[4].weight.requires_grad = False self.layer_2[1].weight.requires_grad = False self.layer_2[3].weight.requires_grad = False self.layer_3[1].weight.requires_grad = False self.layer_3[5].weight.requires_grad = False def optimizer_step( self, current_epoch, batch_nb, optimizer, optimizer_idx, closure, on_tpu=False, using_native_amp=False, using_lbfgs=False, ): if optimizer_idx == 0: assert self.layer_1[0].weight.requires_grad is True assert self.layer_1[2].weight.requires_grad is False assert self.layer_1[4].weight.requires_grad is False assert self.layer_2[1].weight.requires_grad is False assert self.layer_2[3].weight.requires_grad is False assert self.layer_2[5].weight.requires_grad is True assert self.layer_3[1].weight.requires_grad is False assert self.layer_3[3].weight.requires_grad is False assert self.layer_3[5].weight.requires_grad is False if optimizer_idx == 1: assert self.layer_1[0].weight.requires_grad is False assert self.layer_1[2].weight.requires_grad is False assert self.layer_1[4].weight.requires_grad is False assert self.layer_2[1].weight.requires_grad is False assert self.layer_2[3].weight.requires_grad is False assert self.layer_2[5].weight.requires_grad is True assert self.layer_3[1].weight.requires_grad is False assert self.layer_3[3].weight.requires_grad is True assert self.layer_3[5].weight.requires_grad is False if optimizer_idx == 2: assert self.layer_1[0].weight.requires_grad is True assert self.layer_1[2].weight.requires_grad is False assert self.layer_1[4].weight.requires_grad is False assert self.layer_2[1].weight.requires_grad is False assert self.layer_2[3].weight.requires_grad is False assert self.layer_2[5].weight.requires_grad is False assert self.layer_3[1].weight.requires_grad is False assert self.layer_3[3].weight.requires_grad is True assert self.layer_3[5].weight.requires_grad is False optimizer.step(closure=closure) def training_step(self, batch, batch_idx, optimizer_idx=None): loss = super().training_step(batch, batch_idx) # make sure the model is untoggle when returning None return loss if batch_idx % 2 == 0 else None @staticmethod def combine_generators(gen_1, gen_2): yield from gen_1 yield from gen_2 def configure_optimizers(self): optimizer_1 = SGD(self.combine_generators(self.layer_1.parameters(), self.layer_2.parameters()), lr=0.1) optimizer_2 = Adam(self.combine_generators(self.layer_2.parameters(), self.layer_3.parameters()), lr=0.1) optimizer_3 = SGD(self.combine_generators(self.layer_3.parameters(), self.layer_1.parameters()), lr=0.1) return [optimizer_1, optimizer_2, optimizer_3] model = TestModel() model.training_epoch_end = None trainer = Trainer(max_epochs=1, default_root_dir=tmpdir, limit_train_batches=8, accumulate_grad_batches=2) trainer.fit(model) @RunIf(min_gpus=1) def test_device_placement(tmpdir): model = BoringModel() trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, gpus=1) trainer.fit(model) def assert_device(device: torch.device) -> None: assert model.device == device for p in model.parameters(): assert p.device == device assert_device(torch.device("cpu")) model.to(torch.device("cuda:0")) assert_device(torch.device("cuda:0")) trainer.test(model) assert_device(torch.device("cpu")) trainer.predict(model, dataloaders=model.train_dataloader()) assert_device(torch.device("cpu")) class BoringModelWithShardedTensor(BoringModel): def __init__(self, spec): super().__init__() self.sharded_tensor = dist._sharded_tensor.empty(spec, 10, 20) self.sharded_tensor.local_shards()[0].tensor.fill_(0) @RunIf(min_torch="1.10", skip_windows=True) def test_sharded_tensor_state_dict(tmpdir, single_process_pg): spec = dist._sharding_spec.ChunkShardingSpec( dim=0, placements=[ "rank:0/cpu", ], ) m_0 = BoringModelWithShardedTensor(spec) m_0.sharded_tensor.local_shards()[0].tensor.fill_(1) assert "sharded_tensor" in m_0.state_dict(), 'Expect "sharded_tensor" to appear in the state dict' m_1 = BoringModelWithShardedTensor(spec) assert not torch.allclose( m_1.sharded_tensor.local_shards()[0].tensor, m_0.sharded_tensor.local_shards()[0].tensor ), "Expect the shards to be different before `m_1` loading `m_0`'s state dict" m_1.load_state_dict(m_0.state_dict(), strict=False) assert torch.allclose( m_1.sharded_tensor.local_shards()[0].tensor, m_0.sharded_tensor.local_shards()[0].tensor ), "Expect the shards to be same after `m_1` loading `m_0`'s state dict" def test_lightning_module_configure_gradient_clipping(tmpdir): """Test custom gradient clipping inside `configure_gradient_clipping` hook.""" class TestModel(BoringModel): has_validated_gradients = False custom_gradient_clip_val = 1e-2 def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm): assert gradient_clip_val == self.trainer.gradient_clip_val assert gradient_clip_algorithm == self.trainer.gradient_clip_algorithm for pg in optimizer.param_groups: for p in pg["params"]: p.grad.clamp_(min=0, max=self.custom_gradient_clip_val) model = TestModel() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=1, limit_val_batches=0, gradient_clip_val=1e-4 ) trainer.fit(model) optimizer = model.optimizers() for pg in optimizer.param_groups: for p in pg["params"]: if p.grad is not None: assert p.grad.min() >= 0 assert p.grad.max() <= model.custom_gradient_clip_val def test_lightning_module_configure_gradient_clipping_different_argument_values(tmpdir): """Test that setting gradient clipping arguments in `Trainer` and cusotmizing gradient clipping inside `configure_gradient_clipping` with different values raises an exception.""" class TestModel(BoringModel): custom_gradient_clip_val = 1e-2 def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm): self.clip_gradients(optimizer, gradient_clip_val=self.custom_gradient_clip_val) model = TestModel() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=2, limit_val_batches=0, gradient_clip_val=1e-4 ) with pytest.raises( MisconfigurationException, match=r"gradient_clip_val=0.0001\)` and have passed `clip_gradients\(gradient_clip_val=0.01", ): trainer.fit(model) class TestModel(BoringModel): custom_gradient_clip_algorithm = "foo" def configure_gradient_clipping(self, optimizer, optimizer_idx, gradient_clip_val, gradient_clip_algorithm): self.clip_gradients(optimizer, gradient_clip_algorithm=self.custom_gradient_clip_algorithm) model = TestModel() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=2, limit_val_batches=0, gradient_clip_algorithm="norm", ) with pytest.raises( MisconfigurationException, match=r"gradient_clip_algorithm='norm'\)` and have passed `clip_gradients\(gradient_clip_algorithm='foo'", ): trainer.fit(model)