# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from unittest import mock import pytest import torch from pytorch_lightning import callbacks, Trainer from tests.helpers import BoringModel from tests.helpers.runif import RunIf def test_disabled_checkpointing(tmpdir): # no callback trainer = Trainer(max_epochs=3, enable_checkpointing=False) assert not trainer.checkpoint_callbacks trainer.fit(BoringModel()) assert not trainer.checkpoint_callbacks @mock.patch("torch.save") @pytest.mark.parametrize( ["epochs", "val_check_interval", "expected"], [(1, 1.0, 1), (2, 1.0, 2), (1, 0.25, 4), (2, 0.3, 6)] ) def test_default_checkpoint_freq(save_mock, tmpdir, epochs: int, val_check_interval: float, expected: int): model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, max_epochs=epochs, enable_model_summary=False, val_check_interval=val_check_interval, limit_val_batches=1, enable_progress_bar=False, ) trainer.fit(model) # make sure types are correct assert save_mock.call_count == expected @mock.patch("torch.save") @pytest.mark.parametrize( ["k", "epochs", "val_check_interval", "expected"], [(1, 1, 1.0, 1), (2, 2, 1.0, 2), (2, 1, 0.25, 4), (2, 2, 0.3, 6)] ) @pytest.mark.parametrize("save_last", (False, True)) def test_top_k(save_mock, tmpdir, k: int, epochs: int, val_check_interval: float, expected: int, save_last: bool): class TestModel(BoringModel): def __init__(self): super().__init__() self.last_coeff = 10.0 def training_step(self, batch, batch_idx): loss = self.step(torch.ones(32)) loss = loss / (loss + 0.0000001) loss += self.last_coeff self.log("my_loss", loss) self.last_coeff *= 0.999 return loss model = TestModel() trainer = Trainer( callbacks=[callbacks.ModelCheckpoint(dirpath=tmpdir, monitor="my_loss", save_top_k=k, save_last=save_last)], default_root_dir=tmpdir, max_epochs=epochs, enable_model_summary=False, val_check_interval=val_check_interval, ) trainer.fit(model) if save_last: # last epochs are saved every step (so double the save calls) and once `on_train_end` expected = expected * 2 + 1 assert save_mock.call_count == expected @mock.patch("torch.save") @RunIf(standalone=True, min_gpus=2) @pytest.mark.parametrize(["k", "epochs", "val_check_interval", "expected"], [(1, 1, 1.0, 1), (2, 2, 0.3, 4)]) def test_top_k_ddp(save_mock, tmpdir, k, epochs, val_check_interval, expected): class TestModel(BoringModel): def training_step(self, batch, batch_idx): local_rank = int(os.getenv("LOCAL_RANK")) self.log("my_loss", batch_idx * (1 + local_rank), on_epoch=True) return super().training_step(batch, batch_idx) def training_epoch_end(self, outputs) -> None: local_rank = int(os.getenv("LOCAL_RANK")) if self.trainer.is_global_zero: self.log("my_loss_2", (1 + local_rank), on_epoch=True, rank_zero_only=True) data = str(self.global_rank) obj = [[data], (data,), set(data)] out = self.trainer.strategy.broadcast(obj) assert obj == [[str(self.global_rank)], (str(self.global_rank),), set(str(self.global_rank))] assert out == [["0"], ("0",), set("0")] model = TestModel() trainer = Trainer( callbacks=[callbacks.ModelCheckpoint(dirpath=tmpdir, monitor="my_loss_step", save_top_k=k, mode="max")], default_root_dir=tmpdir, enable_progress_bar=False, max_epochs=epochs, enable_model_summary=False, val_check_interval=val_check_interval, strategy="ddp", gpus=2, limit_train_batches=64, limit_val_batches=32, ) trainer.fit(model) if os.getenv("LOCAL_RANK") == "0": assert save_mock.call_count == expected