from abc import ABC from typing import Callable, List from pytorch_lightning.callbacks import Callback class TrainerCallbackHookMixin(ABC): # this is just a summary on variables used in this abstract class, # the proper values/initialisation should be done in child class callbacks: List[Callback] = [] get_model: Callable = ... def on_init_start(self): """Called when the trainer initialization begins, model has not yet been set.""" for callback in self.callbacks: callback.on_init_start(self) def on_init_end(self): """Called when the trainer initialization ends, model has not yet been set.""" for callback in self.callbacks: callback.on_init_end(self) def on_fit_start(self): """Called when the trainer initialization begins, model has not yet been set.""" for callback in self.callbacks: callback.on_fit_start(self) def on_fit_end(self): """Called when the trainer initialization begins, model has not yet been set.""" for callback in self.callbacks: callback.on_fit_end(self) def on_sanity_check_start(self): """Called when the validation sanity check starts.""" for callback in self.callbacks: callback.on_sanity_check_start(self, self.get_model()) def on_sanity_check_end(self): """Called when the validation sanity check ends.""" for callback in self.callbacks: callback.on_sanity_check_end(self, self.get_model()) def on_epoch_start(self): """Called when the epoch begins.""" for callback in self.callbacks: callback.on_epoch_start(self, self.get_model()) def on_epoch_end(self): """Called when the epoch ends.""" for callback in self.callbacks: callback.on_epoch_end(self, self.get_model()) def on_train_start(self): """Called when the train begins.""" for callback in self.callbacks: callback.on_train_start(self, self.get_model()) def on_train_end(self): """Called when the train ends.""" for callback in self.callbacks: callback.on_train_end(self, self.get_model()) def on_batch_start(self): """Called when the training batch begins.""" for callback in self.callbacks: callback.on_batch_start(self, self.get_model()) def on_batch_end(self): """Called when the training batch ends.""" for callback in self.callbacks: callback.on_batch_end(self, self.get_model()) def on_validation_batch_start(self): """Called when the validation batch begins.""" for callback in self.callbacks: callback.on_validation_batch_start(self, self.get_model()) def on_validation_batch_end(self): """Called when the validation batch ends.""" for callback in self.callbacks: callback.on_validation_batch_end(self, self.get_model()) def on_test_batch_start(self): """Called when the test batch begins.""" for callback in self.callbacks: callback.on_test_batch_start(self, self.get_model()) def on_test_batch_end(self): """Called when the test batch ends.""" for callback in self.callbacks: callback.on_test_batch_end(self, self.get_model()) def on_validation_start(self): """Called when the validation loop begins.""" for callback in self.callbacks: callback.on_validation_start(self, self.get_model()) def on_validation_end(self): """Called when the validation loop ends.""" for callback in self.callbacks: callback.on_validation_end(self, self.get_model()) def on_test_start(self): """Called when the test begins.""" for callback in self.callbacks: callback.on_test_start(self, self.get_model()) def on_test_end(self): """Called when the test ends.""" for callback in self.callbacks: callback.on_test_end(self, self.get_model()) def on_keyboard_interrupt(self): """Called when the training is interrupted by KeyboardInterrupt.""" for callback in self.callbacks: callback.on_keyboard_interrupt(self, self.get_model())