# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from torch.utils.data import DataLoader from pytorch_lightning.trainer.trainer import Trainer from tests.helpers import BoringModel, RandomDataset @pytest.mark.parametrize( "max_epochs,expected_val_loop_calls,expected_val_batches", [(1, 0, [0]), (4, 2, [0, 2, 0, 2]), (5, 2, [0, 2, 0, 2, 0])], ) def test_check_val_every_n_epoch(tmpdir, max_epochs, expected_val_loop_calls, expected_val_batches): class TestModel(BoringModel): val_epoch_calls = 0 val_batches = [] def on_train_epoch_end(self, *args, **kwargs): self.val_batches.append(self.trainer.progress_bar_callback.total_val_batches) def on_validation_epoch_start(self) -> None: self.val_epoch_calls += 1 model = TestModel() trainer = Trainer( default_root_dir=tmpdir, max_epochs=max_epochs, num_sanity_val_steps=0, limit_val_batches=2, check_val_every_n_epoch=2, logger=False, ) trainer.fit(model) assert trainer.state.finished, f"Training failed with {trainer.state}" assert model.val_epoch_calls == expected_val_loop_calls assert model.val_batches == expected_val_batches def test_check_val_every_n_epoch_with_max_steps(tmpdir): data_samples_train = 2 check_val_every_n_epoch = 3 max_epochs = 4 class TestModel(BoringModel): def __init__(self): super().__init__() self.validation_called_at_step = set() def validation_step(self, *args): self.validation_called_at_step.add(self.global_step) return super().validation_step(*args) def train_dataloader(self): return DataLoader(RandomDataset(32, data_samples_train)) model = TestModel() trainer = Trainer( default_root_dir=tmpdir, max_steps=data_samples_train * max_epochs, check_val_every_n_epoch=check_val_every_n_epoch, num_sanity_val_steps=0, ) trainer.fit(model) assert trainer.current_epoch == max_epochs assert trainer.global_step == max_epochs * data_samples_train assert list(model.validation_called_at_step) == [data_samples_train * check_val_every_n_epoch]