.. _converting: ###################################### How to Organize PyTorch Into Lightning ###################################### To enable your code to work with Lightning, perform the following to organize PyTorch into Lightning. -------- ****************************** 1. Keep you Computational Code ****************************** Keep your regular nn.Module architecture .. testcode:: import pytorch_lightning as pl import torch import torch.nn as nn import torch.nn.functional as F class LitModel(nn.Module): def __init__(self): super().__init__() self.layer_1 = nn.Linear(28 * 28, 128) self.layer_2 = nn.Linear(128, 10) def forward(self, x): x = x.view(x.size(0), -1) x = self.layer_1(x) x = F.relu(x) x = self.layer_2(x) return x -------- *************************** 2. Configure Training Logic *************************** In the training_step of the LightningModule configure how your training routine behaves with a batch of training data: .. testcode:: class LitModel(pl.LightningModule): def __init__(self, encoder): super().__init__() self.encoder = encoder def training_step(self, batch, batch_idx): x, y = batch y_hat = self.encoder(x) loss = F.cross_entropy(y_hat, y) return loss .. note:: If you need to fully own the training loop for complicated legacy projects, check out :doc:`Own your loop <../model/own_your_loop>`. ---- **************************************** 3. Move Optimizer(s) and LR Scheduler(s) **************************************** Move your optimizers to the :meth:`~pytorch_lightning.core.lightning.LightningModule.configure_optimizers` hook. .. testcode:: class LitModel(pl.LightningModule): def configure_optimizers(self): optimizer = torch.optim.Adam(self.encoder.parameters(), lr=1e-3) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1) return [optimizer], [lr_scheduler] -------- *************************************** 4. Organize Validation Logic (optional) *************************************** If you need a validation loop, configure how your validation routine behaves with a batch of validation data: .. testcode:: class LitModel(pl.LightningModule): def validation_step(self, batch, batch_idx): x, y = batch y_hat = self.encoder(x) val_loss = F.cross_entropy(y_hat, y) self.log("val_loss", val_loss) .. tip:: ``trainer.validate()`` loads the best checkpoint automatically by default if checkpointing was enabled during fitting. -------- ************************************ 5. Organize Testing Logic (optional) ************************************ If you need a test loop, configure how your testing routine behaves with a batch of test data: .. testcode:: class LitModel(pl.LightningModule): def test_step(self, batch, batch_idx): x, y = batch y_hat = self.encoder(x) test_loss = F.cross_entropy(y_hat, y) self.log("test_loss", test_loss) -------- **************************************** 6. Configure Prediction Logic (optional) **************************************** If you need a prediction loop, configure how your prediction routine behaves with a batch of test data: .. testcode:: class LitModel(LightningModule): def predict_step(self, batch, batch_idx): x, y = batch pred = self.encoder(x) return pred -------- ****************************************** 7. Remove any .cuda() or .to(device) Calls ****************************************** Your :doc:`LightningModule <../common/lightning_module>` can automatically run on any hardware! If you have any explicit calls to ``.cuda()`` or ``.to(device)``, you can remove them since Lightning makes sure that the data coming from :class:`~torch.utils.data.DataLoader` and all the :class:`~torch.nn.Module` instances initialized inside ``LightningModule.__init__`` are moved to the respective devices automatically. If you still need to access the current device, you can use ``self.device`` anywhere in your ``LightningModule`` except in the ``__init__`` and ``setup`` methods. .. testcode:: class LitModel(LightningModule): def training_step(self, batch, batch_idx): z = torch.randn(4, 5, device=self.device) ... Hint: If you are initializing a :class:`~torch.Tensor` within the ``LightningModule.__init__`` method and want it to be moved to the device automatically you should call :meth:`~torch.nn.Module.register_buffer` to register it as a parameter. .. testcode:: class LitModel(LightningModule): def __init__(self): super().__init__() self.register_buffer("running_mean", torch.zeros(num_features)) -------- ******************** 8. Use your own data ******************** Regular PyTorch DataLoaders work with Lightning. For more modular and scalable datasets, check out :doc:`LightningDataModule <../data/datamodule>`. ---- ************ Good to know ************ Additionally, you can run only the validation loop using :meth:`~pytorch_lightning.trainer.trainer.Trainer.validate` method. .. code-block:: python model = LitModel() trainer.validate(model) .. note:: ``model.eval()`` and ``torch.no_grad()`` are called automatically for validation. The test loop isn't used within :meth:`~pytorch_lightning.trainer.trainer.Trainer.fit`, therefore, you would need to explicitly call :meth:`~pytorch_lightning.trainer.trainer.Trainer.test`. .. code-block:: python model = LitModel() trainer.test(model) .. note:: ``model.eval()`` and ``torch.no_grad()`` are called automatically for testing. .. tip:: ``trainer.test()`` loads the best checkpoint automatically by default if checkpointing is enabled. The predict loop will not be used until you call :meth:`~pytorch_lightning.trainer.trainer.Trainer.predict`. .. code-block:: python model = LitModel() trainer.predict(model) .. note:: ``model.eval()`` and ``torch.no_grad()`` are called automatically for testing. .. tip:: ``trainer.predict()`` loads the best checkpoint automatically by default if checkpointing is enabled.