############################################ Deploy models into production (intermediate) ############################################ **Audience**: Researchers and MLEs looking to use their models for predictions without Lightning dependencies. ---- ********************* Use PyTorch as normal ********************* If you prefer to use PyTorch directly, feel free to use any Lightning checkpoint without Lightning. .. code-block:: python import torch model = torch.load("path/to/lightning/checkpoint.ckpt") model.eval() You can also pull out the specific modules you want out of the checkpoint: .. code-block:: python model = torch.load("path/to/lightning/checkpoint.ckpt") encoder = model["encoder"] encoder.eval() ---- ******************************************** Extract nn.Module from Lightning checkpoints ******************************************** You can also load the saved checkpoint and use it as a regular :class:`torch.nn.Module`. You can extract all your :class:`torch.nn.Module` and load the weights using the checkpoint saved using LightningModule after training. For this, we recommend copying the exact implementation from your LightningModule ``init`` and ``forward`` method. .. code-block:: python class Encoder(nn.Module): ... class Decoder(nn.Module): ... class AutoEncoderProd(nn.Module): def __init__(self): super().__init__() self.encoder = Encoder() self.decoder = Decoder() def forward(self, x): return self.encoder(x) class AutoEncoderSystem(LightningModule): def __init__(self): super().__init__() self.auto_encoder = AutoEncoderProd() def forward(self, x): return self.auto_encoder.encoder(x) def training_step(self, batch, batch_idx): x, y = batch y_hat = self.auto_encoder.encoder(x) y_hat = self.auto_encoder.decoder(y_hat) loss = ... return loss # train it trainer = Trainer(devices=2, accelerator="gpu", strategy="ddp") model = AutoEncoderSystem() trainer.fit(model, train_dataloader, val_dataloader) trainer.save_checkpoint("best_model.ckpt") # create the PyTorch model and load the checkpoint weights model = AutoEncoderProd() checkpoint = torch.load("best_model.ckpt") hyper_parameters = checkpoint["hyper_parameters"] # if you want to restore any hyperparameters, you can pass them too model = AutoEncoderProd(**hyper_parameters) state_dict = checkpoint["state_dict"] # update keys by dropping `auto_encoder.` for key in list(model_weights): model_weights[key.replace("auto_encoder.", "")] = model_weights.pop(key) model.load_state_dict(model_weights) model.eval() x = torch.randn(1, 64) with torch.no_grad(): y_hat = model(x)