# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import torch from pytorch_lightning.utilities import _TORCH_LOWER_EQUAL_1_4, _TORCH_QUANTIZE_AVAILABLE _TEST_ROOT = os.path.dirname(__file__) _PROJECT_ROOT = os.path.dirname(_TEST_ROOT) _TEMP_PATH = os.path.join(_PROJECT_ROOT, 'test_temp') DATASETS_PATH = os.path.join(_PROJECT_ROOT, 'Datasets') LEGACY_PATH = os.path.join(_PROJECT_ROOT, 'legacy') # todo: this setting `PYTHONPATH` may not be used by other evns like Conda for import packages if _PROJECT_ROOT not in os.getenv('PYTHONPATH', ""): splitter = ":" if os.environ.get("PYTHONPATH", "") else "" os.environ['PYTHONPATH'] = f'{_PROJECT_ROOT}{splitter}{os.environ.get("PYTHONPATH", "")}' # generate a list of random seeds for each test RANDOM_PORTS = list(np.random.randint(12000, 19000, 1000)) if not os.path.isdir(_TEMP_PATH): os.mkdir(_TEMP_PATH) _MISS_QUANT_DEFAULT = 'fbgemm' not in torch.backends.quantized.supported_engines _SKIPIF_ARGS_PT_LE_1_4 = dict(condition=_TORCH_LOWER_EQUAL_1_4, reason="test pytorch > 1.4") _SKIPIF_ARGS_NO_GPU = dict(condition=not torch.cuda.is_available(), reason="test requires single-GPU machine") _SKIPIF_ARGS_NO_GPUS = dict(condition=torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") _SKIPIF_ARGS_NO_PT_QUANT = dict( condition=not _TORCH_QUANTIZE_AVAILABLE or _MISS_QUANT_DEFAULT, reason="PyTorch quantization is needed for this test" )