# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest.mock import MagicMock, Mock import pytest import torch import torch.nn as nn from torch.nn import DataParallel from pytorch_lightning import LightningModule from pytorch_lightning.demos.boring_classes import BoringModel from pytorch_lightning.overrides import LightningDistributedModule from pytorch_lightning.overrides.data_parallel import ( LightningParallelModule, python_scalar_to_tensor, unsqueeze_scalar_tensor, ) from pytorch_lightning.trainer.states import RunningStage from tests_pytorch.helpers.runif import RunIf @pytest.mark.parametrize("wrapper_class", [LightningParallelModule, LightningDistributedModule]) @pytest.mark.parametrize( "stage", [ ("training", "training_step"), ("testing", "test_step"), ("validating", "validation_step"), ("predicting", "predict_step"), ], ) def test_lightning_wrapper_module_methods(wrapper_class, stage): """Test that the LightningWrapper redirects .forward() to the LightningModule methods.""" pl_module = Mock(spec=LightningModule) trainer = Mock() pl_module._trainer = trainer wrapped_module = wrapper_class(pl_module) batch = torch.rand(5) batch_idx = 3 prop, step = stage trainer.sanity_checking = False for p in ("training", "testing", "validating", "predicting"): setattr(trainer, p, p == prop) wrapped_module(batch, batch_idx) getattr(pl_module, step).assert_called_with(batch, batch_idx) @pytest.mark.parametrize( "inp,expected", [ [torch.tensor(1.0), torch.tensor([1.0])], [torch.tensor([2.0]), torch.tensor([2.0])], [torch.ones(3, 4, 5), torch.ones(3, 4, 5)], ], ) def test_unsqueeze_scalar_tensor(inp, expected): """Test that the utility function unsqueezes only scalar tensors.""" assert torch.all(unsqueeze_scalar_tensor(inp).eq(expected)) @RunIf(min_cuda_gpus=2) def test_lightning_parallel_module_unsqueeze_scalar(): """Test that LightningParallelModule takes care of un-squeezeing 0-dim tensors.""" class TestModel(BoringModel): def training_step(self, batch, batch_idx): output = super().training_step(batch, batch_idx) loss = output["loss"] loss = loss.squeeze() assert loss.dim() == 0 # PyTorch usually warns about 0-dim tensors returned in DP return {"loss": loss} model = TestModel() trainer = MagicMock() trainer.state.stage = RunningStage.TRAINING trainer._accelerator_connector._init_deterministic(False) model.trainer = trainer batch = torch.rand(2, 32).cuda() batch_idx = 0 wrapped_model = LightningParallelModule(model).cuda() dp_module = DataParallel(wrapped_model, device_ids=[0, 1]) output = wrapped_model(batch, batch_idx) assert output["loss"].dim() == 1 with pytest.warns(None) as record: output = dp_module(batch, batch_idx) assert output["loss"].dim() == 1 assert not record @pytest.mark.parametrize( "inp,expected", [[1.0, torch.tensor([1.0])], [2, torch.tensor([2.0])], [True, torch.tensor([True])]] ) def test_python_scalar_to_tensor(inp, expected): assert torch.all(python_scalar_to_tensor(inp).eq(expected)) @RunIf(min_cuda_gpus=1) @pytest.mark.parametrize("device", [torch.device("cpu"), torch.device("cuda", 0)]) def test_lightning_parallel_module_python_scalar_conversion(device): """Test that LightningParallelModule can convert Python scalars to tensors.""" class TestModel(BoringModel): def training_step(self, batch, batch_idx): output = super().training_step(batch, batch_idx) # PyTorch DP does not support Python scalars, Lightning converts them to tensors output.update({"python scalar": 12.3}) return output model = TestModel().to(device) trainer = MagicMock() trainer.state.stage = RunningStage.TRAINING trainer._accelerator_connector._init_deterministic(False) model.trainer = trainer batch = torch.rand(2, 32).to(device) batch_idx = 0 wrapped_model = LightningParallelModule(model) output = wrapped_model(batch, batch_idx) assert output["python scalar"] == torch.tensor([12.3], device=device) @RunIf(min_cuda_gpus=2) @pytest.mark.parametrize( "nest, unnest", [ (lambda x: x, lambda x: x), (lambda x: dict(data=x), lambda x: x["data"]), (lambda x: [x, (x, x)], lambda x: x[1][0]), ], ) def test_lightning_parallel_module_device_access(nest, unnest): """Test that self.device returns the correct value in replicas of DataParallel.""" class DeviceAccessModel(LightningModule): def __init__(self): super().__init__() self.layer = nn.Linear(2, 3) def training_step(self, batch, batch_idx): batch = unnest(batch) assert batch.shape == torch.Size([1, 1]) assert self.device.index == batch.item() assert self.device == self.layer.weight.device return torch.tensor(1, device=self.device) pl_module = DeviceAccessModel() # required for redirecting the forward call to training_step trainer = Mock() pl_module.trainer = trainer trainer.state.stage = RunningStage.TRAINING root_device = torch.device("cuda", 0) wrapped_module = LightningParallelModule(pl_module).to(root_device) model = DataParallel(wrapped_module, device_ids=[0, 1]) data = torch.tensor([0.0, 1.0], device=root_device).view(2, 1) # one value per gpu data = data.to(root_device) data = nest(data) output = model(data, 0) assert output.device == root_device assert pl_module.device == root_device assert torch.all(output.cpu().eq(torch.tensor([1, 1]))) @RunIf(min_cuda_gpus=2) def test_lightning_parallel_module_device_access_warning(): """Test that we show a warning when the device can't be inferred from the input.""" class DeviceAccessModel(LightningModule): def training_step(self, batch, batch_idx): pass pl_module = DeviceAccessModel() # required for redirecting the forward call to training_step trainer = Mock() pl_module.trainer = trainer trainer.state.stage = RunningStage.TRAINING wrapped_module = LightningParallelModule(pl_module).cuda() model = DataParallel(wrapped_module, device_ids=[0, 1]) data = dict(x=1) # contains no tensors with pytest.warns(UserWarning, match="Could not determine on which device the inputs are."): _ = model(data, 0)