# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import torch from torch.nn import DataParallel from pytorch_lightning.demos.boring_classes import BoringModel from pytorch_lightning.overrides.base import ( _LightningModuleWrapperBase, _LightningPrecisionModuleWrapperBase, unwrap_lightning_module, ) @pytest.mark.parametrize("wrapper_class", [_LightningModuleWrapperBase, _LightningPrecisionModuleWrapperBase]) def test_wrapper_device_dtype(wrapper_class): model = BoringModel() wrapped_model = wrapper_class(model) wrapped_model.to(dtype=torch.float16) assert model.dtype == torch.float16 def test_unwrap_lightning_module(): model = BoringModel() wrapped_model = _LightningPrecisionModuleWrapperBase(model) wrapped_model = _LightningModuleWrapperBase(wrapped_model) wrapped_model = DataParallel(wrapped_model) with pytest.deprecated_call(match="The function `unwrap_lightning_module` is deprecated in v1.8.0"): assert unwrap_lightning_module(wrapped_model) == model