from abc import ABC from collections import OrderedDict from pytorch_lightning.core.step_result import EvalResult import torch class ValidationStepVariations(ABC): """ Houses all variations of validation steps """ def validation_step(self, batch, batch_idx, *args, **kwargs): """ Lightning calls this inside the validation loop :param batch: :return: """ x, y = batch x = x.view(x.size(0), -1) y_hat = self(x) loss_val = self.loss(y, y_hat) # acc labels_hat = torch.argmax(y_hat, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) val_acc = torch.tensor(val_acc).type_as(x) output = OrderedDict({ 'val_loss': loss_val, 'val_acc': val_acc, 'test_dic': {'val_loss_a': loss_val} }) return output def validation_step_result_obj(self, batch, batch_idx, *args, **kwargs): x, y = batch x = x.view(x.size(0), -1) y_hat = self(x) loss_val = self.loss(y, y_hat) # acc labels_hat = torch.argmax(y_hat, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) val_acc = torch.tensor(val_acc).type_as(x) result = EvalResult(checkpoint_on=loss_val, early_stop_on=loss_val) result.log_dict({ 'val_loss': loss_val, 'val_acc': val_acc, }) return result def validation_step_result_obj_dp(self, batch, batch_idx, *args, **kwargs): x, y = batch x = x.view(x.size(0), -1) y_hat = self(x.to(self.device)) y = y.to(y_hat.device) loss_val = self.loss(y, y_hat) # acc labels_hat = torch.argmax(y_hat, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) val_acc = torch.tensor(val_acc).type_as(x) result = EvalResult(checkpoint_on=loss_val, early_stop_on=loss_val) result.log_dict({ 'val_loss': loss_val, 'val_acc': val_acc, }) self.validation_step_called = True return result def validation_step__multiple_dataloaders(self, batch, batch_idx, dataloader_idx, **kwargs): """ Lightning calls this inside the validation loop :param batch: :return: """ x, y = batch x = x.view(x.size(0), -1) y_hat = self(x) loss_val = self.loss(y, y_hat) # acc labels_hat = torch.argmax(y_hat, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) val_acc = torch.tensor(val_acc).type_as(x) output = OrderedDict({ f'val_loss_{dataloader_idx}': loss_val, f'val_acc_{dataloader_idx}': val_acc, }) return output