# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, List, Optional, Tuple, Union import torch from pytorch_lightning.metrics.functional.roc import _roc_compute, _roc_update from pytorch_lightning.metrics.metric import Metric from pytorch_lightning.utilities import rank_zero_warn class ROC(Metric): """ Computes the Receiver Operating Characteristic (ROC). Works for both binary and multiclass problems. In the case of multiclass, the values will be calculated based on a one-vs-the-rest approach. Forward accepts - ``preds`` (float tensor): ``(N, ...)`` (binary) or ``(N, C, ...)`` (multiclass) tensor with probabilities, where C is the number of classes. - ``target`` (long tensor): ``(N, ...)`` or ``(N, C, ...)`` with integer labels Args: num_classes: integer with number of classes. Not nessesary to provide for binary problems. pos_label: integer determining the positive class. Default is ``None`` which for binary problem is translate to 1. For multiclass problems this argument should not be set as we iteratively change it in the range [0,num_classes-1] compute_on_step: Forward only calls ``update()`` and return None if this is set to False. default: True dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. default: False process_group: Specify the process group on which synchronization is called. default: None (which selects the entire world) Example (binary case): >>> from pytorch_lightning.metrics import ROC >>> pred = torch.tensor([0, 1, 2, 3]) >>> target = torch.tensor([0, 1, 1, 1]) >>> roc = ROC(pos_label=1) >>> fpr, tpr, thresholds = roc(pred, target) >>> fpr tensor([0., 0., 0., 0., 1.]) >>> tpr tensor([0.0000, 0.3333, 0.6667, 1.0000, 1.0000]) >>> thresholds tensor([4, 3, 2, 1, 0]) Example (multiclass case): >>> from pytorch_lightning.metrics import ROC >>> pred = torch.tensor([[0.75, 0.05, 0.05, 0.05], ... [0.05, 0.75, 0.05, 0.05], ... [0.05, 0.05, 0.75, 0.05], ... [0.05, 0.05, 0.05, 0.75]]) >>> target = torch.tensor([0, 1, 3, 2]) >>> roc = ROC(num_classes=4) >>> fpr, tpr, thresholds = roc(pred, target) >>> fpr [tensor([0., 0., 1.]), tensor([0., 0., 1.]), tensor([0.0000, 0.3333, 1.0000]), tensor([0.0000, 0.3333, 1.0000])] >>> tpr [tensor([0., 1., 1.]), tensor([0., 1., 1.]), tensor([0., 0., 1.]), tensor([0., 0., 1.])] >>> thresholds # doctest: +NORMALIZE_WHITESPACE [tensor([1.7500, 0.7500, 0.0500]), tensor([1.7500, 0.7500, 0.0500]), tensor([1.7500, 0.7500, 0.0500]), tensor([1.7500, 0.7500, 0.0500])] """ def __init__( self, num_classes: Optional[int] = None, pos_label: Optional[int] = None, compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, ): super().__init__( compute_on_step=compute_on_step, dist_sync_on_step=dist_sync_on_step, process_group=process_group, ) self.num_classes = num_classes self.pos_label = pos_label self.add_state("preds", default=[], dist_reduce_fx=None) self.add_state("target", default=[], dist_reduce_fx=None) rank_zero_warn( 'Metric `ROC` will save all targets and predictions in buffer.' ' For large datasets this may lead to large memory footprint.' ) def update(self, preds: torch.Tensor, target: torch.Tensor): """ Update state with predictions and targets. Args: preds: Predictions from model target: Ground truth values """ preds, target, num_classes, pos_label = _roc_update(preds, target, self.num_classes, self.pos_label) self.preds.append(preds) self.target.append(target) self.num_classes = num_classes self.pos_label = pos_label def compute( self ) -> Union[Tuple[torch.Tensor, torch.Tensor, torch.Tensor], Tuple[List[torch.Tensor], List[torch.Tensor], List[torch.Tensor]]]: """ Compute the receiver operating characteristic Returns: 3-element tuple containing fpr: tensor with false positive rates. If multiclass, this is a list of such tensors, one for each class. tpr: tensor with true positive rates. If multiclass, this is a list of such tensors, one for each class. thresholds: thresholds used for computing false- and true postive rates """ preds = torch.cat(self.preds, dim=0) target = torch.cat(self.target, dim=0) return _roc_compute(preds, target, self.num_classes, self.pos_label)