# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import os from abc import ABC from argparse import ArgumentParser, Namespace from typing import List, Optional, Union, Type, TypeVar from pytorch_lightning.callbacks import ProgressBarBase from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning.trainer.connectors.checkpoint_connector import CheckpointConnector from pytorch_lightning.trainer.connectors.logger_connector import LoggerConnector from pytorch_lightning.trainer.connectors.model_connector import ModelConnector from pytorch_lightning.trainer.states import TrainerState from pytorch_lightning.utilities import argparse_utils from pytorch_lightning.utilities.cloud_io import get_filesystem from pytorch_lightning.utilities.model_utils import is_overridden class TrainerProperties(ABC): precision: int logger_connector: LoggerConnector _state: TrainerState global_rank: int fast_dev_run: bool use_dp: bool use_ddp: bool use_ddp2: bool model: LightningModule data_parallel_device_ids: Optional[List[int]] _progress_bar_callback: ProgressBarBase limit_val_batches: int _default_root_dir: str _weights_save_path: str model_connector: ModelConnector checkpoint_connector: CheckpointConnector @property def use_amp(self) -> bool: return self.precision == 16 @property def callback_metrics(self): return self.logger_connector.callback_metrics @callback_metrics.setter def callback_metrics(self, x): self.logger_connector.callback_metrics = x @property def logged_metrics(self): return self.logger_connector.logged_metrics @logged_metrics.setter def logged_metrics(self, x): self.logger_connector.logged_metrics = x @property def progress_bar_metrics(self): return self.logger_connector.progress_bar_metrics @progress_bar_metrics.setter def progress_bar_metrics(self, x): self.logger_connector.progress_bar_metrics = x @property def state(self) -> TrainerState: return self._state @property def is_global_zero(self) -> bool: return self.global_rank == 0 @property def slurm_job_id(self) -> Optional[int]: try: job_id = os.environ['SLURM_JOB_ID'] job_id = int(job_id) # in interactive mode, don't make logs use the same job id in_slurm_interactive_mode = os.environ['SLURM_JOB_NAME'] == 'bash' if in_slurm_interactive_mode: job_id = None except Exception: job_id = None return job_id @classmethod def default_attributes(cls): init_signature = inspect.signature(cls) args = {} for param_name in init_signature.parameters: value = init_signature.parameters[param_name].default args[param_name] = value return args @classmethod def get_deprecated_arg_names(cls) -> List: """Returns a list with deprecated Trainer arguments.""" depr_arg_names = [] for name, val in cls.__dict__.items(): if name.startswith('DEPRECATED') and isinstance(val, (tuple, list)): depr_arg_names.extend(val) return depr_arg_names @classmethod def from_argparse_args(cls: Type['_T'], args: Union[Namespace, ArgumentParser], **kwargs) -> '_T': return argparse_utils.from_argparse_args(cls, args, **kwargs) @classmethod def parse_argparser(cls, arg_parser: Union[ArgumentParser, Namespace]) -> Namespace: return argparse_utils.parse_argparser(cls, arg_parser) @classmethod def match_env_arguments(cls) -> Namespace: return argparse_utils.parse_env_variables(cls) @classmethod def add_argparse_args(cls, parent_parser: ArgumentParser) -> ArgumentParser: return argparse_utils.add_argparse_args(cls, parent_parser) @property def num_gpus(self) -> int: gpus = self.data_parallel_device_ids if gpus is None: return 0 return len(gpus) @property def data_parallel(self) -> bool: return self.use_dp or self.use_ddp or self.use_ddp2 @property def progress_bar_callback(self): return self._progress_bar_callback @property def progress_bar_dict(self) -> dict: """ Read-only for progress bar metrics. """ ref_model = self.model if not self.data_parallel else self.model.module return dict(**ref_model.get_progress_bar_dict(), **self.logger_connector.progress_bar_metrics) @property def disable_validation(self) -> bool: """ Check if validation is disabled during training. """ return not self.enable_validation @property def enable_validation(self) -> bool: """ Check if we should run validation during training. """ model_ref = self.model_connector.get_model() val_loop_enabled = is_overridden('validation_step', model_ref) and self.limit_val_batches > 0 return val_loop_enabled or self.fast_dev_run @property def default_root_dir(self) -> str: """ The default location to save artifacts of loggers, checkpoints etc. It is used as a fallback if logger or checkpoint callback do not define specific save paths. """ if get_filesystem(self._default_root_dir).protocol == "file": return os.path.normpath(self._default_root_dir) return self._default_root_dir @property def weights_save_path(self) -> str: """ The default root location to save weights (checkpoints), e.g., when the :class:`~pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint` does not define a file path. """ if get_filesystem(self._weights_save_path).protocol == "file": return os.path.normpath(self._weights_save_path) return self._weights_save_path def save_checkpoint(self, filepath, weights_only: bool = False): self.checkpoint_connector.save_checkpoint(filepath, weights_only) def get_model(self): return self.model_connector.get_model() # Used to represent the concrete type TrainerProperties class methods are called on. _T = TypeVar('_T', bound=TrainerProperties)