# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import operator import os from argparse import Namespace from unittest import mock import numpy as np import pytest import torch import yaml from pytorch_lightning import Trainer from pytorch_lightning.loggers import TensorBoardLogger from pytorch_lightning.utilities.imports import _compare_version, _OMEGACONF_AVAILABLE from tests.helpers import BoringModel from tests.helpers.runif import RunIf if _OMEGACONF_AVAILABLE: from omegaconf import OmegaConf @pytest.mark.skipif( _compare_version("tensorboard", operator.ge, "2.6.0"), reason="cannot import EventAccumulator in >= 2.6.0" ) def test_tensorboard_hparams_reload(tmpdir): from tensorboard.backend.event_processing.event_accumulator import EventAccumulator class CustomModel(BoringModel): def __init__(self, b1=0.5, b2=0.999): super().__init__() self.save_hyperparameters() trainer = Trainer(max_steps=1, default_root_dir=tmpdir) model = CustomModel() assert trainer.log_dir == trainer.logger.log_dir trainer.fit(model) assert trainer.log_dir == trainer.logger.log_dir folder_path = trainer.log_dir # make sure yaml is there with open(os.path.join(folder_path, "hparams.yaml")) as file: # The FullLoader parameter handles the conversion from YAML # scalar values to Python the dictionary format yaml_params = yaml.safe_load(file) assert yaml_params["b1"] == 0.5 assert yaml_params["b2"] == 0.999 assert len(yaml_params.keys()) == 2 # verify artifacts assert len(os.listdir(os.path.join(folder_path, "checkpoints"))) == 1 # verify tb logs event_acc = EventAccumulator(folder_path) event_acc.Reload() hparams_data = b'\x12\x1f"\x06\n\x02b1 \x03"\x06\n\x02b2 \x03*\r\n\x0b\x12\thp_metric' assert event_acc.summary_metadata["_hparams_/experiment"].plugin_data.plugin_name == "hparams" assert event_acc.summary_metadata["_hparams_/experiment"].plugin_data.content == hparams_data def test_tensorboard_automatic_versioning(tmpdir): """Verify that automatic versioning works.""" root_dir = tmpdir / "tb_versioning" root_dir.mkdir() (root_dir / "version_0").mkdir() (root_dir / "version_1").mkdir() logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning") assert logger.version == 2 def test_tensorboard_manual_versioning(tmpdir): """Verify that manual versioning works.""" root_dir = tmpdir / "tb_versioning" root_dir.mkdir() (root_dir / "version_0").mkdir() (root_dir / "version_1").mkdir() (root_dir / "version_2").mkdir() logger = TensorBoardLogger(save_dir=tmpdir, name="tb_versioning", version=1) assert logger.version == 1 def test_tensorboard_named_version(tmpdir): """Verify that manual versioning works for string versions, e.g. '2020-02-05-162402'.""" name = "tb_versioning" (tmpdir / name).mkdir() expected_version = "2020-02-05-162402" logger = TensorBoardLogger(save_dir=tmpdir, name=name, version=expected_version) logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5}) # Force data to be written assert logger.version == expected_version assert os.listdir(tmpdir / name) == [expected_version] assert os.listdir(tmpdir / name / expected_version) @pytest.mark.parametrize("name", ["", None]) def test_tensorboard_no_name(tmpdir, name): """Verify that None or empty name works.""" logger = TensorBoardLogger(save_dir=tmpdir, name=name) logger.log_hyperparams({"a": 1, "b": 2, 123: 3, 3.5: 4, 5j: 5}) # Force data to be written assert os.path.normpath(logger.root_dir) == tmpdir # use os.path.normpath to handle trailing / assert os.listdir(tmpdir / "version_0") @mock.patch.dict(os.environ, {}) def test_tensorboard_log_sub_dir(tmpdir): class TestLogger(TensorBoardLogger): # for reproducibility @property def version(self): return "version" @property def name(self): return "name" trainer_args = dict(default_root_dir=tmpdir, max_steps=1) # no sub_dir specified save_dir = tmpdir / "logs" logger = TestLogger(save_dir) trainer = Trainer(**trainer_args, logger=logger) assert trainer.logger.log_dir == os.path.join(save_dir, "name", "version") # sub_dir specified logger = TestLogger(save_dir, sub_dir="sub_dir") trainer = Trainer(**trainer_args, logger=logger) assert trainer.logger.log_dir == os.path.join(save_dir, "name", "version", "sub_dir") # test home dir (`~`) handling save_dir = "~/tmp" explicit_save_dir = os.path.expanduser(save_dir) logger = TestLogger(save_dir, sub_dir="sub_dir") trainer = Trainer(**trainer_args, logger=logger) assert trainer.logger.log_dir == os.path.join(explicit_save_dir, "name", "version", "sub_dir") # test env var (`$`) handling test_env_dir = "some_directory" os.environ["test_env_dir"] = test_env_dir save_dir = "$test_env_dir/tmp" explicit_save_dir = f"{test_env_dir}/tmp" logger = TestLogger(save_dir, sub_dir="sub_dir") trainer = Trainer(**trainer_args, logger=logger) assert trainer.logger.log_dir == os.path.join(explicit_save_dir, "name", "version", "sub_dir") @pytest.mark.parametrize("step_idx", [10, None]) def test_tensorboard_log_metrics(tmpdir, step_idx): logger = TensorBoardLogger(tmpdir) metrics = {"float": 0.3, "int": 1, "FloatTensor": torch.tensor(0.1), "IntTensor": torch.tensor(1)} logger.log_metrics(metrics, step_idx) def test_tensorboard_log_hyperparams(tmpdir): logger = TensorBoardLogger(tmpdir) hparams = { "float": 0.3, "int": 1, "string": "abc", "bool": True, "dict": {"a": {"b": "c"}}, "list": [1, 2, 3], "namespace": Namespace(foo=Namespace(bar="buzz")), "layer": torch.nn.BatchNorm1d, "tensor": torch.empty(2, 2, 2), "array": np.empty([2, 2, 2]), } logger.log_hyperparams(hparams) def test_tensorboard_log_hparams_and_metrics(tmpdir): logger = TensorBoardLogger(tmpdir, default_hp_metric=False) hparams = { "float": 0.3, "int": 1, "string": "abc", "bool": True, "dict": {"a": {"b": "c"}}, "list": [1, 2, 3], "namespace": Namespace(foo=Namespace(bar="buzz")), "layer": torch.nn.BatchNorm1d, "tensor": torch.empty(2, 2, 2), "array": np.empty([2, 2, 2]), } metrics = {"abc": torch.tensor([0.54])} logger.log_hyperparams(hparams, metrics) @RunIf(omegaconf=True) def test_tensorboard_log_omegaconf_hparams_and_metrics(tmpdir): logger = TensorBoardLogger(tmpdir, default_hp_metric=False) hparams = { "float": 0.3, "int": 1, "string": "abc", "bool": True, "dict": {"a": {"b": "c"}}, "list": [1, 2, 3], } hparams = OmegaConf.create(hparams) metrics = {"abc": torch.tensor([0.54])} logger.log_hyperparams(hparams, metrics) @pytest.mark.parametrize("example_input_array", [None, torch.rand(2, 32)]) def test_tensorboard_log_graph(tmpdir, example_input_array): """test that log graph works with both model.example_input_array and if array is passed externally.""" model = BoringModel() if example_input_array is not None: model.example_input_array = None logger = TensorBoardLogger(tmpdir, log_graph=True) logger.log_graph(model, example_input_array) def test_tensorboard_log_graph_warning_no_example_input_array(tmpdir): """test that log graph throws warning if model.example_input_array is None.""" model = BoringModel() model.example_input_array = None logger = TensorBoardLogger(tmpdir, log_graph=True) with pytest.warns( UserWarning, match="Could not log computational graph since the `model.example_input_array`" " attribute is not set or `input_array` was not given", ): logger.log_graph(model) @mock.patch("pytorch_lightning.loggers.TensorBoardLogger.log_metrics") def test_tensorboard_with_accummulated_gradients(mock_log_metrics, tmpdir): """Tests to ensure that tensorboard log properly when accumulated_gradients > 1.""" class TestModel(BoringModel): def __init__(self): super().__init__() self.indexes = [] def training_step(self, *args): self.log("foo", 1, on_step=True, on_epoch=True) if not self.trainer.fit_loop._should_accumulate(): if self.trainer.logger_connector.should_update_logs: self.indexes.append(self.trainer.global_step) return super().training_step(*args) model = TestModel() model.training_epoch_end = None logger_0 = TensorBoardLogger(tmpdir, default_hp_metric=False) trainer = Trainer( default_root_dir=tmpdir, limit_train_batches=12, limit_val_batches=0, max_epochs=3, accumulate_grad_batches=2, logger=[logger_0], log_every_n_steps=3, ) trainer.fit(model) calls = [m[2] for m in mock_log_metrics.mock_calls] count_epochs = [c["step"] for c in calls if "foo_epoch" in c["metrics"]] assert count_epochs == [5, 11, 17] count_steps = [c["step"] for c in calls if "foo_step" in c["metrics"]] assert count_steps == model.indexes @mock.patch("pytorch_lightning.loggers.tensorboard.SummaryWriter") def test_tensorboard_finalize(summary_writer, tmpdir): """Test that the SummaryWriter closes in finalize.""" logger = TensorBoardLogger(save_dir=tmpdir) logger.finalize("any") summary_writer().flush.assert_called() summary_writer().close.assert_called() def test_tensorboard_save_hparams_to_yaml_once(tmpdir): model = BoringModel() logger = TensorBoardLogger(save_dir=tmpdir, default_hp_metric=False) trainer = Trainer(max_steps=1, default_root_dir=tmpdir, logger=logger) assert trainer.log_dir == trainer.logger.log_dir trainer.fit(model) hparams_file = "hparams.yaml" assert os.path.isfile(os.path.join(trainer.log_dir, hparams_file)) assert not os.path.isfile(os.path.join(tmpdir, hparams_file)) @mock.patch("pytorch_lightning.loggers.tensorboard.log") def test_tensorboard_with_symlink(log, tmpdir): """Tests a specific failure case when tensorboard logger is used with empty name, symbolic link ``save_dir``, and relative paths.""" os.chdir(tmpdir) # need to use relative paths source = os.path.join(".", "lightning_logs") dest = os.path.join(".", "sym_lightning_logs") os.makedirs(source, exist_ok=True) os.symlink(source, dest) logger = TensorBoardLogger(save_dir=dest, name="") _ = logger.version log.warning.assert_not_called() def test_tensorboard_missing_folder_warning(tmpdir, caplog): """Verify that the logger throws a warning for invalid directory.""" name = "fake_dir" logger = TensorBoardLogger(save_dir=tmpdir, name=name) with caplog.at_level(logging.WARNING): assert logger.version == 0 assert "Missing logger folder:" in caplog.text