# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass, field from typing import Any, Dict, Optional from torch import Tensor from pytorch_lightning.loops import Loop from pytorch_lightning.loops.optimization.closure import OutputResult from pytorch_lightning.loops.utilities import _build_training_step_kwargs, _extract_hiddens from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities.types import STEP_OUTPUT @dataclass class ManualResult(OutputResult): """A container to hold the result returned by the ``ManualLoop``. It is created from the output of :meth:`~pytorch_lightning.core.lightning.LightningModule.training_step`. Attributes: extra: Anything returned by the ``training_step``. """ extra: Dict[str, Any] = field(default_factory=dict) @classmethod def from_training_step_output(cls, training_step_output: Optional[STEP_OUTPUT]) -> "ManualResult": extra = {} if isinstance(training_step_output, dict): extra = {k: v for k, v in training_step_output.items() if k != "hiddens"} elif isinstance(training_step_output, Tensor): extra = {"loss": training_step_output} elif training_step_output is not None: raise MisconfigurationException( "In manual optimization, `training_step` must either return a Tensor, " "a dict with extras to pass to `training_epoch_end` or have no return." ) if "loss" in extra: # we detach manually as it's expected that it will have a `grad_fn` extra["loss"] = extra["loss"].detach() return cls(extra=extra) def asdict(self) -> Dict[str, Any]: return self.extra _OUTPUTS_TYPE = Dict[str, Any] class ManualOptimization(Loop[_OUTPUTS_TYPE]): """A special loop implementing what is known in Lightning as Manual Optimization where the optimization happens entirely in the :meth:`~pytorch_lightning.core.lightning.LightningModule.training_step` and therefore the user is responsible for back-propagating gradients and making calls to the optimizers. This loop is a trivial case because it performs only a single iteration (calling directly into the module's :meth:`~pytorch_lightning.core.lightning.LightningModule.training_step`) and passing through the output(s). """ output_result_cls = ManualResult def __init__(self) -> None: super().__init__() self._done: bool = False self._hiddens: Optional[Any] = None self._output: _OUTPUTS_TYPE = {} @property def done(self) -> bool: return self._done def reset(self) -> None: self._done = False def advance(self, batch: Any, batch_idx: int) -> None: # type: ignore[override] """Performs the training step for manual optimization. Args: batch: the current tbptt split of the current batch batch_idx: the index of the current batch """ assert self.trainer is not None lightning_module = self.trainer.lightning_module with self.trainer.profiler.profile("model_forward"): step_kwargs = _build_training_step_kwargs( lightning_module, self.trainer.optimizers, batch, batch_idx, opt_idx=None, hiddens=self._hiddens ) # manually capture logged metrics training_step_output = self.trainer._call_strategy_hook("training_step", *step_kwargs.values()) self.trainer.strategy.post_training_step() del step_kwargs model_output = self.trainer._call_lightning_module_hook("training_step_end", training_step_output) strategy_output = self.trainer._call_strategy_hook("training_step_end", training_step_output) training_step_output = strategy_output if model_output is None else model_output self._hiddens = _extract_hiddens(training_step_output, lightning_module.truncated_bptt_steps) result = self.output_result_cls.from_training_step_output(training_step_output) if self.trainer.move_metrics_to_cpu: # hiddens and the training step output are not moved as they are not considered "metrics" # the user might need them on the correct device for an operation in `training_epoch_end` assert self.trainer._results is not None self.trainer._results.cpu() self._done = True self._output = result.asdict() def on_run_end(self) -> _OUTPUTS_TYPE: """Returns the result of this loop, i.e., the post-processed outputs from the training step.""" output, self._output = self._output, {} # free memory return output