import pytest import tests.base.utils as tutils from pytorch_lightning import Trainer, LightningModule from pytorch_lightning.utilities.exceptions import MisconfigurationException from tests.base import EvalModelTemplate from tests.base import ( TestModelBase, LightValidationDataloader, LightValidationStepMixin, LightValStepFitSingleDataloaderMixin, LightTrainDataloader, ) def test_error_on_no_train_step(tmpdir): """ Test that an error is thrown when no `training_step()` is defined """ tutils.reset_seed() class CurrentTestModel(LightningModule): def forward(self, x): pass trainer_options = dict(default_root_dir=tmpdir, max_epochs=1) trainer = Trainer(**trainer_options) with pytest.raises(MisconfigurationException): model = CurrentTestModel() trainer.fit(model) def test_error_on_no_train_dataloader(tmpdir): """ Test that an error is thrown when no `training_dataloader()` is defined """ tutils.reset_seed() hparams = tutils.get_default_hparams() class CurrentTestModel(TestModelBase): pass trainer_options = dict(default_root_dir=tmpdir, max_epochs=1) trainer = Trainer(**trainer_options) with pytest.raises(MisconfigurationException): model = CurrentTestModel(hparams) trainer.fit(model) def test_error_on_no_configure_optimizers(tmpdir): """ Test that an error is thrown when no `configure_optimizers()` is defined """ tutils.reset_seed() class CurrentTestModel(LightTrainDataloader, LightningModule): def forward(self, x): pass def training_step(self, batch, batch_idx, optimizer_idx=None): pass trainer_options = dict(default_root_dir=tmpdir, max_epochs=1) trainer = Trainer(**trainer_options) with pytest.raises(MisconfigurationException): model = CurrentTestModel() trainer.fit(model) def test_warning_on_wrong_validation_settings(tmpdir): """ Test the following cases related to validation configuration of model: * error if `val_dataloader()` is overriden but `validation_step()` is not * if both `val_dataloader()` and `validation_step()` is overriden, throw warning if `val_epoch_end()` is not defined * error if `validation_step()` is overriden but `val_dataloader()` is not """ tutils.reset_seed() hparams = tutils.get_default_hparams() trainer_options = dict(default_root_dir=tmpdir, max_epochs=1) trainer = Trainer(**trainer_options) class CurrentTestModel(LightTrainDataloader, LightValidationDataloader, TestModelBase): pass # check val_dataloader -> val_step with pytest.raises(MisconfigurationException): model = CurrentTestModel(hparams) trainer.fit(model) class CurrentTestModel(LightTrainDataloader, LightValidationStepMixin, TestModelBase): pass # check val_dataloader + val_step -> val_epoch_end with pytest.warns(RuntimeWarning): model = CurrentTestModel(hparams) trainer.fit(model) class CurrentTestModel(LightTrainDataloader, LightValStepFitSingleDataloaderMixin, TestModelBase): pass # check val_step -> val_dataloader with pytest.raises(MisconfigurationException): model = CurrentTestModel(hparams) trainer.fit(model) def test_warning_on_wrong_test_settigs(tmpdir): """ Test the following cases related to test configuration of model: * error if `test_dataloader()` is overriden but `test_step()` is not * if both `test_dataloader()` and `test_step()` is overriden, throw warning if `test_epoch_end()` is not defined * error if `test_step()` is overriden but `test_dataloader()` is not """ tutils.reset_seed() hparams = tutils.get_default_hparams() trainer = Trainer(default_root_dir=tmpdir, max_epochs=1) # ---------------- # if have test_dataloader should have test_step # ---------------- with pytest.raises(MisconfigurationException): model = EvalModelTemplate(hparams) model.test_step = None trainer.fit(model) # ---------------- # if have test_dataloader and test_step recommend test_epoch_end # ---------------- with pytest.warns(RuntimeWarning): model = EvalModelTemplate(hparams) model.test_epoch_end = None trainer.test(model) # ---------------- # if have test_step and NO test_dataloader passed in tell user to pass test_dataloader # ---------------- with pytest.raises(MisconfigurationException): model = EvalModelTemplate(hparams) model.test_dataloader = lambda: None trainer.test(model) # ---------------- # if have test_dataloader and NO test_step tell user to implement test_step # ---------------- with pytest.raises(MisconfigurationException): model = EvalModelTemplate(hparams) model.test_dataloader = lambda: None model.test_step = None trainer.test(model, test_dataloaders=model.dataloader(train=False)) # ---------------- # if have test_dataloader and test_step but no test_epoch_end warn user # ---------------- with pytest.warns(RuntimeWarning): model = EvalModelTemplate(hparams) model.test_dataloader = lambda: None model.test_epoch_end = None trainer.test(model, test_dataloaders=model.dataloader(train=False))