import inspect import os from argparse import ArgumentParser, Namespace from typing import Union, Optional, List, Dict, Tuple, Iterable, Any import torch import torch.distributed as torch_distrib import torch.multiprocessing as mp from torch.utils.data import DataLoader from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping, Callback from pytorch_lightning.core.lightning import LightningModule from pytorch_lightning.core.memory import ModelSummary from pytorch_lightning.loggers import LightningLoggerBase from pytorch_lightning.profiler import SimpleProfiler, PassThroughProfiler, BaseProfiler from pytorch_lightning.trainer.auto_mix_precision import TrainerAMPMixin from pytorch_lightning.trainer.callback_config import TrainerCallbackConfigMixin from pytorch_lightning.trainer.callback_hook import TrainerCallbackHookMixin from pytorch_lightning.trainer.data_loading import TrainerDataLoadingMixin from pytorch_lightning.trainer.deprecated_api import ( TrainerDeprecatedAPITillVer0_9, TrainerDeprecatedAPITillVer0_10) from pytorch_lightning.trainer.distrib_data_parallel import TrainerDDPMixin from pytorch_lightning.trainer.distrib_parts import ( TrainerDPMixin, _parse_gpu_ids, determine_root_gpu_device, pick_multiple_gpus, _parse_tpu_cores) from pytorch_lightning.trainer.evaluation_loop import TrainerEvaluationLoopMixin from pytorch_lightning.trainer.logging import TrainerLoggingMixin from pytorch_lightning.trainer.model_hooks import TrainerModelHooksMixin from pytorch_lightning.trainer.optimizers import TrainerOptimizersMixin from pytorch_lightning.trainer.supporters import TensorRunningAccum from pytorch_lightning.trainer.training_io import TrainerIOMixin from pytorch_lightning.trainer.training_loop import TrainerTrainLoopMixin from pytorch_lightning.trainer.training_tricks import TrainerTrainingTricksMixin from pytorch_lightning.trainer.lr_finder import TrainerLRFinderMixin from pytorch_lightning.utilities.exceptions import MisconfigurationException from pytorch_lightning.utilities import rank_zero_warn, parsing, rank_zero_info, rank_zero_only try: from apex import amp except ImportError: APEX_AVAILABLE = False else: APEX_AVAILABLE = True try: import torch_xla import torch_xla.core.xla_model as xm import torch_xla.distributed.xla_multiprocessing as xmp except ImportError: XLA_AVAILABLE = False else: XLA_AVAILABLE = True try: import horovod.torch as hvd except ImportError: HOROVOD_AVAILABLE = False else: HOROVOD_AVAILABLE = True class Trainer( TrainerIOMixin, TrainerCallbackHookMixin, TrainerModelHooksMixin, TrainerOptimizersMixin, TrainerAMPMixin, TrainerDPMixin, TrainerDDPMixin, TrainerLoggingMixin, TrainerTrainingTricksMixin, TrainerDataLoadingMixin, TrainerEvaluationLoopMixin, TrainerTrainLoopMixin, TrainerCallbackConfigMixin, TrainerLRFinderMixin, TrainerDeprecatedAPITillVer0_9, TrainerDeprecatedAPITillVer0_10, ): DEPRECATED_IN_0_9 = ('use_amp', 'show_progress_bar', 'training_tqdm_dict', 'num_tpu_cores') def __init__( self, logger: Union[LightningLoggerBase, Iterable[LightningLoggerBase], bool] = True, checkpoint_callback: Union[ModelCheckpoint, bool] = True, early_stop_callback: Optional[Union[EarlyStopping, bool]] = False, callbacks: Optional[List[Callback]] = None, default_root_dir: Optional[str] = None, gradient_clip_val: float = 0, process_position: int = 0, num_nodes: int = 1, num_processes: int = 1, gpus: Optional[Union[List[int], str, int]] = None, auto_select_gpus: bool = False, tpu_cores: Optional[Union[List[int], str, int]] = None, log_gpu_memory: Optional[str] = None, progress_bar_refresh_rate: int = 1, overfit_batches: Union[int, float] = 0.0, track_grad_norm: Union[int, float, str] = -1, check_val_every_n_epoch: int = 1, fast_dev_run: bool = False, accumulate_grad_batches: Union[int, Dict[int, int], List[list]] = 1, max_epochs: int = 1000, min_epochs: int = 1, max_steps: Optional[int] = None, min_steps: Optional[int] = None, limit_train_batches: Union[int, float] = 1.0, limit_val_batches: Union[int, float] = 1.0, limit_test_batches: Union[int, float] = 1.0, val_check_interval: Union[int, float] = 1.0, log_save_interval: int = 100, row_log_interval: int = 50, distributed_backend: Optional[str] = None, precision: int = 32, print_nan_grads: bool = False, # backward compatible, todo: remove in v0.9.0 weights_summary: Optional[str] = ModelSummary.MODE_DEFAULT, weights_save_path: Optional[str] = None, num_sanity_val_steps: int = 2, truncated_bptt_steps: Optional[int] = None, resume_from_checkpoint: Optional[str] = None, profiler: Optional[Union[BaseProfiler, bool]] = None, benchmark: bool = False, deterministic: bool = False, reload_dataloaders_every_epoch: bool = False, auto_lr_find: Union[bool, str] = False, replace_sampler_ddp: bool = True, terminate_on_nan: bool = False, auto_scale_batch_size: Union[str, bool] = False, prepare_data_per_node: bool = True, amp_level: str = 'O1', # backward compatible, todo: remove in v1.0.0 num_tpu_cores: Optional[int] = None, # backward compatible, todo: remove in v0.9.0 use_amp=None, # backward compatible, todo: remove in v0.9.0 show_progress_bar=None, # backward compatible, todo: remove in v0.9.0 val_percent_check: float = None, # backward compatible, todo: remove in v0.10.0 test_percent_check: float = None, # backward compatible, todo: remove in v0.10.0 train_percent_check: float = None, # backward compatible, todo: remove in v0.10.0 overfit_pct: float = None # backward compatible, todo: remove in v1.0.0 ): r""" Customize every aspect of training via flags Args: logger: Logger (or iterable collection of loggers) for experiment tracking. checkpoint_callback: Callback for checkpointing. early_stop_callback (:class:`pytorch_lightning.callbacks.EarlyStopping`): callbacks: Add a list of callbacks. default_root_dir: Default path for logs and weights when no logger/ckpt_callback passed gradient_clip_val: 0 means don't clip. gradient_clip: .. warning:: .. deprecated:: 0.7.0 Use `gradient_clip_val` instead. Will remove 0.9.0. process_position: orders the progress bar when running multiple models on same machine. num_nodes: number of GPU nodes for distributed training. nb_gpu_nodes: .. warning:: .. deprecated:: 0.7.0 Use `num_nodes` instead. Will remove 0.9.0. gpus: Which GPUs to train on. auto_select_gpus: If enabled and `gpus` is an integer, pick available gpus automatically. This is especially useful when GPUs are configured to be in "exclusive mode", such that only one process at a time can access them. tpu_cores: How many TPU cores to train on (1 or 8) / Single TPU to train on [1] num_tpu_cores: How many TPU cores to train on (1 or 8) .. warning:: .. deprecated:: 0.7.6. Will remove 0.9.0. log_gpu_memory: None, 'min_max', 'all'. Might slow performance show_progress_bar: .. warning:: .. deprecated:: 0.7.2 Set `progress_bar_refresh_rate` to positive integer to enable. Will remove 0.9.0. progress_bar_refresh_rate: How often to refresh progress bar (in steps). Value ``0`` disables progress bar. Ignored when a custom callback is passed to :paramref:`~Trainer.callbacks`. overfit_batches: Overfit a percent of training data (float) or a set number of batches (int). Default: 0.0 overfit_pct: .. warning:: .. deprecated:: 0.8.0 Use `overfit_batches` instead. Will be removed in 0.10.0. track_grad_norm: -1 no tracking. Otherwise tracks that p-norm. May be set to 'inf' infinity-norm. check_val_every_n_epoch: Check val every n train epochs. fast_dev_run: runs 1 batch of train, test and val to find any bugs (ie: a sort of unit test). accumulate_grad_batches: Accumulates grads every k batches or as set up in the dict. max_epochs: Stop training once this number of epochs is reached. max_nb_epochs: .. warning:: .. deprecated:: 0.7.0 Use `max_epochs` instead. Will remove 0.9.0. min_epochs: Force training for at least these many epochs min_nb_epochs: .. warning:: .. deprecated:: 0.7.0 Use `min_epochs` instead. Will remove 0.9.0. max_steps: Stop training after this number of steps. Disabled by default (None). min_steps: Force training for at least these number of steps. Disabled by default (None). limit_train_batches: How much of training dataset to check (floats = percent, int = num_batches) limit_val_batches: How much of validation dataset to check (floats = percent, int = num_batches) limit_test_batches: How much of test dataset to check (floats = percent, int = num_batches) train_percent_check: .. warning:: .. deprecated:: 0.8.0 Use `limit_train_batches` instead. Will remove v0.10.0. val_percent_check: .. warning:: .. deprecated:: 0.8.0 Use `limit_val_batches` instead. Will remove v0.10.0. test_percent_check: .. warning:: .. deprecated:: 0.8.0 Use `limit_test_batches` instead. Will remove v0.10.0. val_check_interval: How often within one training epoch to check the validation set log_save_interval: Writes logs to disk this often row_log_interval: How often to add logging rows (does not write to disk) add_row_log_interval: .. warning:: .. deprecated:: 0.7.0 Use `row_log_interval` instead. Will remove 0.9.0. distributed_backend: The distributed backend to use (dp, ddp, ddp2, ddp_spawn) use_amp: .. warning:: .. deprecated:: 0.7.0 Use `precision` instead. Will remove 0.9.0. precision: Full precision (32), half precision (16). print_nan_grads: .. warning:: .. deprecated:: 0.7.2 Has no effect. When detected, NaN grads will be printed automatically. Will remove 0.9.0. weights_summary: Prints a summary of the weights when training begins. weights_save_path: Where to save weights if specified. Will override default_root_dir for checkpoints only. Use this if for whatever reason you need the checkpoints stored in a different place than the logs written in `default_root_dir`. amp_level: The optimization level to use (O1, O2, etc...). num_sanity_val_steps: Sanity check runs n batches of val before starting the training routine. truncated_bptt_steps: Truncated back prop breaks performs backprop every k steps of resume_from_checkpoint: To resume training from a specific checkpoint pass in the path here. This can be a URL. profiler: To profile individual steps during training and assist in reload_dataloaders_every_epoch: Set to True to reload dataloaders every epoch auto_lr_find: If set to True, will `initially` run a learning rate finder, trying to optimize initial learning for faster convergence. Sets learning rate in self.lr or self.learning_rate in the LightningModule. To use a different key, set a string instead of True with the key name. replace_sampler_ddp: Explicitly enables or disables sampler replacement. If not specified this will toggled automatically ddp is used benchmark: If true enables cudnn.benchmark. deterministic: If true enables cudnn.deterministic terminate_on_nan: If set to True, will terminate training (by raising a `ValueError`) at the end of each training batch, if any of the parameters or the loss are NaN or +/-inf. auto_scale_batch_size: If set to True, will `initially` run a batch size finder trying to find the largest batch size that fits into memory. The result will be stored in self.batch_size in the LightningModule. Additionally, can be set to either `power` that estimates the batch size through a power search or `binsearch` that estimates the batch size through a binary search. prepare_data_per_node: If True, each LOCAL_RANK=0 will call prepare data. Otherwise only NODE_RANK=0, LOCAL_RANK=0 will prepare data """ super().__init__() self.deterministic = deterministic torch.backends.cudnn.deterministic = self.deterministic if self.deterministic: # fixing non-deterministic part of horovod # https://github.com/PyTorchLightning/pytorch-lightning/pull/1572/files#r420279383 os.environ["HOROVOD_FUSION_THRESHOLD"] = str(0) # init the default rank if exists # we need to call this here or NVIDIA flags and other messaging in init will show on all ranks # this way we only show it on rank 0 if 'LOCAL_RANK' in os.environ: rank_zero_only.rank = os.environ['LOCAL_RANK'] # Init callbacks self.prepare_data_per_node = prepare_data_per_node self.callbacks = callbacks or [] self.on_init_start() # benchmarking self.benchmark = benchmark torch.backends.cudnn.benchmark = self.benchmark # Transfer params self.num_nodes = num_nodes self.log_gpu_memory = log_gpu_memory self.gradient_clip_val = gradient_clip_val self.check_val_every_n_epoch = check_val_every_n_epoch if not isinstance(track_grad_norm, (int, float)) and track_grad_norm != 'inf': raise MisconfigurationException( "track_grad_norm can be an int, a float or 'inf' (infinity norm).") self.track_grad_norm = float(track_grad_norm) self.on_gpu = True if (gpus and torch.cuda.is_available()) else False # tpu config if num_tpu_cores is not None: rank_zero_warn("Argument `num_tpu_cores` is now set by `tpu_cores` since v0.7.6" " and this argument will be removed in v0.9.0", DeprecationWarning) if tpu_cores is None: tpu_cores = num_tpu_cores self.tpu_cores = _parse_tpu_cores(tpu_cores) self.on_tpu = self.tpu_cores is not None self.tpu_id = self.tpu_cores[0] if isinstance(self.tpu_cores, list) else None if num_processes != 1 and distributed_backend != "ddp_cpu": rank_zero_warn("num_processes is only used for distributed_backend=\"ddp_cpu\". Ignoring it.") self.num_processes = num_processes self.weights_summary = weights_summary self.max_epochs = max_epochs self.min_epochs = min_epochs self.max_steps = max_steps self.min_steps = min_steps self.num_sanity_val_steps = num_sanity_val_steps # Backward compatibility, TODO: remove in v0.9.0 if print_nan_grads: rank_zero_warn("Argument `print_nan_grads` has no effect and will be removed in v0.9.0." " NaN grads will be printed automatically when detected.", DeprecationWarning) self.reload_dataloaders_every_epoch = reload_dataloaders_every_epoch self.auto_lr_find = auto_lr_find self.auto_scale_batch_size = auto_scale_batch_size self._is_data_prepared = False self.replace_sampler_ddp = replace_sampler_ddp self.truncated_bptt_steps = truncated_bptt_steps self.resume_from_checkpoint = resume_from_checkpoint self.terminate_on_nan = terminate_on_nan self.shown_warnings = set() self.fast_dev_run = fast_dev_run if self.fast_dev_run: self.num_sanity_val_steps = 0 self.max_epochs = 1 rank_zero_info('Running in fast_dev_run mode: will run a full train,' ' val and test loop using a single batch') # set default save path if user didn't provide one self.default_root_dir = default_root_dir if self.default_root_dir is None: self.default_root_dir = os.getcwd() # training bookeeping self.total_batch_idx = 0 self.running_loss = TensorRunningAccum(window_length=20) self.batch_idx = 0 self.progress_bar_metrics = {} self.callback_metrics = {} self.num_val_batches = [0] self.num_training_batches = 0 self.num_test_batches = [0] self.train_dataloader = None self.test_dataloaders = None self.val_dataloaders = None # training state self.model = None self.testing = False self.disable_validation = False self.lr_schedulers = [] self.optimizers = None self.optimizer_frequencies = [] self.global_step = 0 self.current_epoch = 0 self.interrupted = False # configure logger self.configure_logger(logger) # configure profiler if profiler is True: profiler = SimpleProfiler() self.profiler = profiler or PassThroughProfiler() # configure early stop callback # creates a default one if none passed in self.configure_early_stopping(early_stop_callback) # configure checkpoint callback self.checkpoint_callback = checkpoint_callback self.weights_save_path = weights_save_path # accumulated grads self.accumulate_grad_batches = accumulate_grad_batches self.configure_accumulated_gradients(accumulate_grad_batches) # for gpus allow int, string and gpu list if auto_select_gpus and isinstance(gpus, int): self.gpus = pick_multiple_gpus(gpus) else: self.gpus = gpus self.data_parallel_device_ids = _parse_gpu_ids(self.gpus) self.root_gpu = determine_root_gpu_device(self.data_parallel_device_ids) self.root_device = torch.device("cpu") # tpu state flags self.use_tpu = False self.tpu_local_core_rank = None self.tpu_global_core_rank = None # distributed backend choice self.distributed_backend = distributed_backend self.set_distributed_mode(distributed_backend) # override dist backend when using tpus if self.on_tpu: self.init_tpu() # init flags for SLURM+DDP to work self.world_size = 1 self.interactive_ddp_procs = [] self.configure_slurm_ddp(self.num_nodes) self.node_rank = self.determine_ddp_node_rank() self.local_rank = self.determine_local_rank() self.global_rank = 0 # NVIDIA setup self.set_nvidia_flags(self.is_slurm_managing_tasks, self.data_parallel_device_ids) # backward compatibility if show_progress_bar is not None: self.show_progress_bar = show_progress_bar self._progress_bar_callback = self.configure_progress_bar(progress_bar_refresh_rate, process_position) # logging self.log_save_interval = log_save_interval self.val_check_interval = val_check_interval self.row_log_interval = row_log_interval # how much of the data to use # TODO: remove in 0.10.0 if overfit_pct is not None: rank_zero_warn("Argument `overfit_pct` is now set by `overfit_batches` since v0.8.0" " and this argument will be removed in v0.10.0", DeprecationWarning) overfit_batches = overfit_pct # convert floats to ints self.overfit_batches = _determine_limit_batches(overfit_batches) # TODO: remove in 0.10.0 if val_percent_check is not None: rank_zero_warn("Argument `val_percent_check` is now set by `limit_val_batches` since v0.8.0" " and this argument will be removed in v0.10.0", DeprecationWarning) limit_val_batches = val_percent_check # TODO: remove in 0.10.0 if test_percent_check is not None: rank_zero_warn("Argument `test_percent_check` is now set by `limit_test_batches` since v0.8.0" " and this argument will be removed in v0.10.0", DeprecationWarning) limit_test_batches = test_percent_check # TODO: remove in 0.10.0 if train_percent_check is not None: rank_zero_warn("Argument `train_percent_check` is now set by `limit_train_batches` since v0.8.0" " and this argument will be removed in v0.10.0", DeprecationWarning) limit_train_batches = train_percent_check self.limit_test_batches = _determine_limit_batches(limit_test_batches) self.limit_val_batches = _determine_limit_batches(limit_val_batches) self.limit_train_batches = _determine_limit_batches(limit_train_batches) self.determine_data_use_amount(self.overfit_batches) # AMP init # These are the only lines needed after v0.8.0 # we wrap the user's forward with autocast and give it back at the end of fit self.autocast_original_forward = None self.use_native_amp = hasattr(torch.cuda, "amp") and hasattr(torch.cuda.amp, "autocast") self.precision = precision self.scaler = None self.amp_level = amp_level self.init_amp(use_amp) self.on_colab_kaggle = os.getenv('COLAB_GPU') or os.getenv('KAGGLE_URL_BASE') # Callback system self.on_init_end() @property def is_global_zero(self) -> bool: return self.global_rank == 0 @property def slurm_job_id(self) -> Optional[int]: try: job_id = os.environ['SLURM_JOB_ID'] job_id = int(job_id) # in interactive mode, don't make logs use the same job id in_slurm_interactive_mode = os.environ['SLURM_JOB_NAME'] == 'bash' if in_slurm_interactive_mode: job_id = None except Exception: job_id = None return job_id @classmethod def default_attributes(cls): init_signature = inspect.signature(Trainer) args = {} for param_name in init_signature.parameters: value = init_signature.parameters[param_name].default args[param_name] = value return args @classmethod def get_init_arguments_and_types(cls) -> List[Tuple[str, Tuple, Any]]: r"""Scans the Trainer signature and returns argument names, types and default values. Returns: List with tuples of 3 values: (argument name, set with argument types, argument default value). Examples: >>> args = Trainer.get_init_arguments_and_types() >>> import pprint >>> pprint.pprint(sorted(args)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE [('accumulate_grad_batches', (, typing.Dict[int, int], typing.List[list]), 1), ... ('callbacks', (typing.List[pytorch_lightning.callbacks.base.Callback], ), None), ('check_val_every_n_epoch', (,), 1), ... ('max_epochs', (,), 1000), ... ('precision', (,), 32), ('prepare_data_per_node', (,), True), ('print_nan_grads', (,), False), ('process_position', (,), 0), ('profiler', (, , ), None), ... """ trainer_default_params = inspect.signature(cls).parameters name_type_default = [] for arg in trainer_default_params: arg_type = trainer_default_params[arg].annotation arg_default = trainer_default_params[arg].default try: arg_types = tuple(arg_type.__args__) except AttributeError: arg_types = (arg_type,) name_type_default.append((arg, arg_types, arg_default)) return name_type_default @classmethod def get_deprecated_arg_names(cls) -> List: """Returns a list with deprecated Trainer arguments.""" depr_arg_names = [] for name, val in cls.__dict__.items(): if name.startswith('DEPRECATED') and isinstance(val, (tuple, list)): depr_arg_names.extend(val) return depr_arg_names @classmethod def add_argparse_args(cls, parent_parser: ArgumentParser) -> ArgumentParser: r"""Extends existing argparse by default `Trainer` attributes. Args: parent_parser: The custom cli arguments parser, which will be extended by the Trainer default arguments. Only arguments of the allowed types (str, float, int, bool) will extend the `parent_parser`. Examples: >>> import argparse >>> import pprint >>> parser = argparse.ArgumentParser() >>> parser = Trainer.add_argparse_args(parser) >>> args = parser.parse_args([]) >>> pprint.pprint(vars(args)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE {... 'check_val_every_n_epoch': 1, 'checkpoint_callback': True, 'default_root_dir': None, 'deterministic': False, 'distributed_backend': None, 'early_stop_callback': False, ... 'logger': True, 'max_epochs': 1000, 'max_steps': None, 'min_epochs': 1, 'min_steps': None, ... 'profiler': None, 'progress_bar_refresh_rate': 1, ...} """ parser = ArgumentParser(parents=[parent_parser], add_help=False, ) blacklist = ['kwargs'] depr_arg_names = cls.get_deprecated_arg_names() + blacklist allowed_types = (str, float, int, bool) # TODO: get "help" from docstring :) for arg, arg_types, arg_default in (at for at in cls.get_init_arguments_and_types() if at[0] not in depr_arg_names): arg_types = [at for at in allowed_types if at in arg_types] if not arg_types: # skip argument with not supported type continue arg_kwargs = {} if bool in arg_types: arg_kwargs.update(nargs="?") # if the only arg type is bool if len(arg_types) == 1: # redefine the type for ArgParser needed def use_type(x): return bool(parsing.str_to_bool(x)) else: # filter out the bool as we need to use more general use_type = [at for at in arg_types if at is not bool][0] else: use_type = arg_types[0] if arg == 'gpus' or arg == 'tpu_cores': use_type = Trainer._allowed_type arg_default = Trainer._arg_default parser.add_argument( f'--{arg}', dest=arg, default=arg_default, type=use_type, help='autogenerated by pl.Trainer', **arg_kwargs, ) return parser def _allowed_type(x) -> Union[int, str]: if ',' in x: return str(x) else: return int(x) def _arg_default(x) -> Union[int, str]: if ',' in x: return str(x) else: return int(x) @staticmethod def parse_argparser(arg_parser: Union[ArgumentParser, Namespace]) -> Namespace: """Parse CLI arguments, required for custom bool types.""" args = arg_parser.parse_args() if isinstance(arg_parser, ArgumentParser) else arg_parser args = {k: True if v is None else v for k, v in vars(args).items()} return Namespace(**args) @classmethod def from_argparse_args(cls, args: Union[Namespace, ArgumentParser], **kwargs) -> 'Trainer': """ Create an instance from CLI arguments. Args: args: The parser or namespace to take arguments from. Only known arguments will be parsed and passed to the :class:`Trainer`. **kwargs: Additional keyword arguments that may override ones in the parser or namespace. These must be valid Trainer arguments. Example: >>> parser = ArgumentParser(add_help=False) >>> parser = Trainer.add_argparse_args(parser) >>> parser.add_argument('--my_custom_arg', default='something') # doctest: +SKIP >>> args = Trainer.parse_argparser(parser.parse_args("")) >>> trainer = Trainer.from_argparse_args(args, logger=False) """ if isinstance(args, ArgumentParser): args = cls.parse_argparser(args) params = vars(args) # we only want to pass in valid Trainer args, the rest may be user specific valid_kwargs = inspect.signature(cls.__init__).parameters trainer_kwargs = dict((name, params[name]) for name in valid_kwargs if name in params) trainer_kwargs.update(**kwargs) return cls(**trainer_kwargs) @property def num_gpus(self) -> int: gpus = self.data_parallel_device_ids if gpus is None: return 0 return len(gpus) @property def data_parallel(self) -> bool: return self.use_dp or self.use_ddp or self.use_ddp2 @property def progress_bar_callback(self): return self._progress_bar_callback @property def progress_bar_dict(self) -> dict: """ Read-only for progress bar metrics. """ ref_model = self.model if not self.data_parallel else self.model.module return dict(**ref_model.get_progress_bar_dict(), **self.progress_bar_metrics) # ----------------------------- # MODEL TRAINING # ----------------------------- def fit( self, model: LightningModule, train_dataloader: Optional[DataLoader] = None, val_dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None ): r""" Runs the full optimization routine. Args: model: Model to fit. train_dataloader: A Pytorch DataLoader with training samples. If the model has a predefined train_dataloader method this will be skipped. val_dataloaders: Either a single Pytorch Dataloader or a list of them, specifying validation samples. If the model has a predefined val_dataloaders method this will be skipped Example:: # Option 1, # Define the train_dataloader() and val_dataloader() fxs # in the lightningModule # RECOMMENDED FOR MOST RESEARCH AND APPLICATIONS TO MAINTAIN READABILITY trainer = Trainer() model = LightningModule() trainer.fit(model) # Option 2 # in production cases we might want to pass different datasets to the same model # Recommended for PRODUCTION SYSTEMS train, val = DataLoader(...), DataLoader(...) trainer = Trainer() model = LightningModule() trainer.fit(model, train_dataloader=train, val_dataloaders=val) # Option 1 & 2 can be mixed, for example the training set can be # defined as part of the model, and validation can then be feed to .fit() """ # bind logger and other properties model.logger = self.logger self.copy_trainer_model_properties(model) # clean hparams if hasattr(model, 'hparams'): parsing.clean_namespace(model.hparams) # set up the passed in dataloaders (if needed) self.__attach_dataloaders(model, train_dataloader, val_dataloaders) # check that model is configured correctly self.check_model_configuration(model) # callbacks self.on_fit_start() if self.is_function_implemented('on_fit_start', model): model.on_fit_start() # on multi-gpu jobs we only want to manipulate (download, etc) on node_rank=0, local_rank=0 # or in the case where each node needs to do its own manipulation in which case just local_rank=0 if self.can_prepare_data(): model.prepare_data() self._is_data_prepared = True # Run auto batch size scaling if self.auto_scale_batch_size: if isinstance(self.auto_scale_batch_size, bool): self.auto_scale_batch_size = 'power' self.scale_batch_size(model, mode=self.auto_scale_batch_size) model.logger = self.logger # reset logger binding # Run learning rate finder: if self.auto_lr_find: self._run_lr_finder_internally(model) model.logger = self.logger # reset logger binding # route to appropriate start method # when using multi-node or DDP within a node start each module in a separate process if self.use_ddp2: if self.is_slurm_managing_tasks: task = int(os.environ['SLURM_LOCALID']) # torchelastic or general non_slurm ddp2 elif 'WORLD_SIZE' in os.environ and ('GROUP_RANK' in os.environ or 'NODE_RANK' in os.environ): task = int(os.environ['LOCAL_RANK']) self.ddp_train(task, model) elif self.use_ddp: if self.is_slurm_managing_tasks: task = int(os.environ['SLURM_LOCALID']) self.ddp_train(task, model) # torchelastic or general non_slurm ddp elif 'WORLD_SIZE' in os.environ and ('GROUP_RANK' in os.environ or 'NODE_RANK' in os.environ): task = int(os.environ['LOCAL_RANK']) self.ddp_train(task, model) elif self.distributed_backend == 'cpu_ddp': self.set_random_port() self.model = model mp.spawn(self.ddp_train, nprocs=self.num_processes, args=(model,)) elif self.distributed_backend == 'ddp_spawn': self.set_random_port() model.share_memory() # spin up peers mp.spawn(self.ddp_train, nprocs=self.num_processes, args=(model, )) elif self.distributed_backend == 'ddp': self.set_random_port() self.spawn_ddp_children(model) # 1 gpu or dp option triggers training using DP module # easier to avoid NCCL issues elif self.use_dp: self.dp_train(model) elif self.use_horovod: self.horovod_train(model) elif self.single_gpu: self.single_gpu_train(model) elif self.use_tpu: # pragma: no-cover rank_zero_info(f'training on {self.tpu_cores} TPU cores') if not XLA_AVAILABLE: raise MisconfigurationException('No TPU devices found.') # COLAB_GPU is an env var available by default in Colab environments. start_method = 'fork' if self.on_colab_kaggle else 'spawn' # track for predict self.model = model # train if self.tpu_id is not None: self.tpu_train(self.tpu_id, model) else: xmp.spawn(self.tpu_train, args=(model,), nprocs=self.tpu_cores, start_method=start_method) # load weights if not interrupted self.load_spawn_weights(model) self.model = model # ON CPU else: # run through amp wrapper if self.use_amp: raise MisconfigurationException('amp + cpu is not supported. Please use a GPU option') # call setup after the ddp process has connected self.setup('fit') if self.is_function_implemented('setup', model): model.setup('fit') # CHOOSE OPTIMIZER # allow for lr schedulers as well self.optimizers, self.lr_schedulers, self.optimizer_frequencies = self.init_optimizers(model) self.run_pretrain_routine(model) # callbacks self.on_fit_end() # model hooks if self.is_function_implemented('on_fit_end'): model.on_fit_end() self.teardown('fit') if self.is_function_implemented('teardown'): model.teardown('fit') # return 1 when finished # used for testing or when we need to know that training succeeded return 1 def can_prepare_data(self): if self.prepare_data_per_node: return self.local_rank == 0 else: return self.node_rank == 0 and self.local_rank == 0 def __attach_dataloaders(self, model, train_dataloader=None, val_dataloaders=None, test_dataloaders=None): # when dataloader is passed via fit, patch the train_dataloader # functions to overwrite with these implementations if train_dataloader is not None: model.train_dataloader = _PatchDataLoader(train_dataloader) if val_dataloaders is not None: model.val_dataloader = _PatchDataLoader(val_dataloaders) if test_dataloaders is not None: model.test_dataloader = _PatchDataLoader(test_dataloaders) def run_pretrain_routine(self, model: LightningModule): """Sanity check a few things before starting actual training. Args: model: The model to run sanity test on. """ ref_model = model if self.data_parallel: ref_model = model.module # give model convenience properties ref_model.trainer = self # set local properties on the model self.copy_trainer_model_properties(ref_model) # init amp. Must be done here instead of __init__ to allow ddp to work if self.use_native_amp and self.precision == 16: self.scaler = torch.cuda.amp.GradScaler() # log hyper-parameters if self.logger is not None: # save exp to get started self.logger.log_hyperparams(ref_model.hparams) self.logger.save() if self.use_ddp or self.use_ddp2: torch_distrib.barrier() # wait for all models to restore weights if self.on_tpu and XLA_AVAILABLE: # wait for all processes to catch up torch_xla.core.xla_model.rendezvous("pl.Trainer.run_pretrain_routine") elif self.use_horovod: # wait for all processes to catch up hvd.join() # register auto-resubmit when on SLURM self.register_slurm_signal_handlers() # print model summary if self.is_global_zero and self.weights_summary is not None and not self.testing: if self.weights_summary in ModelSummary.MODES: ref_model.summarize(mode=self.weights_summary) else: raise MisconfigurationException( "weights_summary can be None, " + ", ".join(ModelSummary.MODES) ) # track model now. # if cluster resets state, the model will update with the saved weights self.model = model # set up checkpoint callback self.configure_checkpoint_callback() # restore training and model before hpc call self.restore_weights(model) # when testing requested only run test and return if self.testing: # only load test dataloader for testing # self.reset_test_dataloader(ref_model) self.run_evaluation(test_mode=True) return # check if we should run validation during training self.disable_validation = not (self.is_overridden('validation_step') and self.limit_val_batches > 0) \ and not self.fast_dev_run # run tiny validation (if validation defined) # to make sure program won't crash during val if not self.disable_validation and self.num_sanity_val_steps > 0: self.reset_val_dataloader(ref_model) # hook and callback ref_model.on_sanity_check_start() self.on_sanity_check_start() num_loaders = len(self.val_dataloaders) max_batches = [self.num_sanity_val_steps] * num_loaders eval_results = self._evaluate(model, self.val_dataloaders, max_batches, False) _, _, _, callback_metrics, _ = self.process_output(eval_results) self.on_sanity_check_end() # verify that early stop has conditioned on a metric that exists if self.enable_early_stop: self.early_stop_callback._validate_condition_metric(callback_metrics) # clear cache before training if self.on_gpu and self.root_gpu is not None: # use context because of: # https://discuss.pytorch.org/t/out-of-memory-when-i-use-torch-cuda-empty-cache/57898 with torch.cuda.device(f'cuda:{self.root_gpu}'): torch.cuda.empty_cache() # CORE TRAINING LOOP self.train() def test( self, model: Optional[LightningModule] = None, test_dataloaders: Optional[Union[DataLoader, List[DataLoader]]] = None, ckpt_path: Optional[str] = 'best' ): r""" Separates from fit to make sure you never run on your test set until you want to. Args: model: The model to test. test_dataloaders: Either a single Pytorch Dataloader or a list of them, specifying validation samples. ckpt_path: Either ``best`` or path to the checkpoint you wish to test. If ``None``, use the weights from the last epoch to test. Default to ``best``. Example:: # Option 1 # run test with the best checkpoint from ``ModelCheckpoint`` after fitting. test = DataLoader(...) trainer = Trainer() model = LightningModule() trainer.fit(model) trainer.test(test_dataloaders=test) # Option 2 # run test with the specified checkpoint after fitting test = DataLoader(...) trainer = Trainer() model = LightningModule() trainer.fit(model) trainer.test(test_dataloaders=test, ckpt_path='path/to/checkpoint.ckpt') # Option 3 # run test with the weights from the end of training after fitting test = DataLoader(...) trainer = Trainer() model = LightningModule() trainer.fit(model) trainer.test(test_dataloaders=test, ckpt_path=None) # Option 4 # run test from a loaded model. ``ckpt_path`` is ignored in this case. test = DataLoader(...) model = LightningModule.load_from_checkpoint('path/to/checkpoint.ckpt') trainer = Trainer() trainer.test(model, test_dataloaders=test) """ self.setup('test') model_ref = self.model if model is None else model if self.is_function_implemented('setup', model_ref): model_ref.setup('test') self.barrier('test_setup') if model is None and ckpt_path == 'best' and self.checkpoint_callback.save_top_k <= 0: raise MisconfigurationException( 'ckpt_path is "best", but ModelCheckpoint is not configured to save the best model.') # if model is not given (None), ckpt_path is given, # load the given checkpoint for testing if model is None and ckpt_path is not None: # ckpt_path is 'best' so load the best model if ckpt_path == 'best': ckpt_path = self.checkpoint_callback.best_model_path model = self.get_model().load_from_checkpoint(ckpt_path) self.testing = True if test_dataloaders is not None: if model: self.__attach_dataloaders(model, test_dataloaders=test_dataloaders) else: self.__attach_dataloaders(self.model, test_dataloaders=test_dataloaders) if model is not None: self.model = model self.fit(model) # on tpu, .spawn means we don't have a trained model # TODO: remove TPU spawn elif self.use_tpu: # pragma: no-cover # attempt to load weights from a spawn path = os.path.join(self.default_root_dir, '__temp_weight_ddp_end.ckpt') test_model = self.model if os.path.exists(path): test_model = self.load_spawn_weights(self.model) self.fit(test_model) else: self.run_evaluation(test_mode=True) self.testing = False self.teardown('test') if self.is_function_implemented('teardown'): model_ref = self.get_model() model_ref.teardown('test') def check_model_configuration(self, model: LightningModule): r""" Checks that the model is configured correctly before training or testing is started. Args: model: The model to check the configuration. """ # Check training_step, train_dataloader, configure_optimizer methods if not self.testing: if not self.is_overridden('training_step', model): raise MisconfigurationException( 'No `training_step()` method defined. Lightning `Trainer` expects as minimum a' ' `training_step()`, `training_dataloader()` and `configure_optimizers()` to be defined.') if not self.is_overridden('train_dataloader', model): raise MisconfigurationException( 'No `train_dataloader()` method defined. Lightning `Trainer` expects as minimum a' ' `training_step()`, `training_dataloader()` and `configure_optimizers()` to be defined.') if not self.is_overridden('configure_optimizers', model): raise MisconfigurationException( 'No `configure_optimizers()` method defined. Lightning `Trainer` expects as minimum a' ' `training_step()`, `training_dataloader()` and `configure_optimizers()` to be defined.') # Check val_dataloader, validation_step and validation_epoch_end if self.is_overridden('val_dataloader', model): if not self.is_overridden('validation_step', model): raise MisconfigurationException('You have passed in a `val_dataloader()`' ' but have not defined `validation_step()`.') else: if not self.is_overridden('validation_epoch_end', model): rank_zero_warn( 'You have defined a `val_dataloader()` and have defined a `validation_step()`,' ' you may also want to define `validation_epoch_end()` for accumulating stats.', RuntimeWarning ) else: if self.is_overridden('validation_step', model): raise MisconfigurationException('You have defined `validation_step()`,' ' but have not passed in a `val_dataloader()`.') # Check test_dataloader, test_step and test_epoch_end if self.is_overridden('test_dataloader', model): if not self.is_overridden('test_step', model): raise MisconfigurationException('You have passed in a `test_dataloader()`' ' but have not defined `test_step()`.') else: if not self.is_overridden('test_epoch_end', model): rank_zero_warn( 'You have defined a `test_dataloader()` and have defined a `test_step()`, you may also want to' ' define `test_epoch_end()` for accumulating stats.', RuntimeWarning ) else: if self.testing and self.is_overridden('test_step', model): raise MisconfigurationException('You have defined `test_step()` but did not' ' implement `test_dataloader` nor passed in `.test(test_dataloader)`.') def barrier(self, name): if self.use_ddp or self.use_ddp2: torch_distrib.barrier() if self.on_tpu and XLA_AVAILABLE: # wait for all processes to catch up torch_xla.core.xla_model.rendezvous(f'pl.Trainer.{name}') class _PatchDataLoader(object): r""" Callable object for patching dataloaders passed into trainer.fit(). Use this class to override model.*_dataloader() and be pickle-compatible. Args: dataloader: Dataloader object to return when called. """ def __init__(self, dataloader: Union[List[DataLoader], DataLoader]): self.dataloader = dataloader # cannot pickle __code__ so cannot verify if PatchDataloader # exists which shows dataloader methods have been overwritten. # so, we hack it by using the string representation self.patch_loader_code = str(self.__call__.__code__) def __call__(self) -> Union[List[DataLoader], DataLoader]: return self.dataloader def _determine_limit_batches(batches: Union[int, float]) -> Union[int, float]: if 0 <= batches <= 1: return batches elif batches > 1 and batches % 1.0 == 0: return int(batches) else: raise MisconfigurationException( f'You have passed invalid value {batches}, it has to be in (0, 1) or nature number.' )