# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock import pytest import torch from torch.nn.parallel.distributed import DistributedDataParallel import pytorch_lightning as pl from pytorch_lightning import seed_everything, Trainer from pytorch_lightning.callbacks import Callback from pytorch_lightning.demos.boring_classes import BoringModel from pytorch_lightning.strategies import DDPStrategy from tests_pytorch.helpers.datamodules import ClassifDataModule from tests_pytorch.helpers.runif import RunIf from tests_pytorch.helpers.simple_models import ClassificationModel @RunIf(min_cuda_gpus=2, standalone=True, sklearn=True) def test_multi_gpu_model_ddp_fit_only(tmpdir): dm = ClassifDataModule() model = ClassificationModel() trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp") trainer.fit(model, datamodule=dm) @RunIf(min_cuda_gpus=2, standalone=True, sklearn=True) def test_multi_gpu_model_ddp_test_only(tmpdir): dm = ClassifDataModule() model = ClassificationModel() trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp") trainer.test(model, datamodule=dm) @RunIf(min_cuda_gpus=2, standalone=True, sklearn=True) def test_multi_gpu_model_ddp_fit_test(tmpdir): seed_everything(4321) dm = ClassifDataModule() model = ClassificationModel() trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, accelerator="gpu", devices=2, strategy="ddp") trainer.fit(model, datamodule=dm) result = trainer.test(model, datamodule=dm) for out in result: assert out["test_acc"] > 0.7 @RunIf(skip_windows=True) def test_torch_distributed_backend_invalid(cuda_count_2, tmpdir): """This test set `undefined` as torch backend and should raise an `Backend.UNDEFINED` ValueError.""" model = BoringModel() trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, strategy=DDPStrategy(process_group_backend="undefined"), accelerator="cuda", devices=2, logger=False, ) with pytest.raises(ValueError, match="Invalid backend: 'undefined'"): trainer.fit(model) @RunIf(skip_windows=True) @mock.patch("torch.cuda.set_device") def test_ddp_torch_dist_is_available_in_setup(mock_set_device, cuda_count_1, tmpdir): """Test to ensure torch distributed is available within the setup hook using ddp.""" class TestModel(BoringModel): def setup(self, stage: str) -> None: assert torch.distributed.is_initialized() raise SystemExit() model = TestModel() trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, strategy=DDPStrategy(process_group_backend="gloo"), accelerator="gpu", devices=1, ) with pytest.raises(SystemExit): trainer.fit(model) @RunIf(min_cuda_gpus=2, min_torch="1.8.1", standalone=True) @pytest.mark.parametrize("precision", (16, 32)) def test_ddp_wrapper(tmpdir, precision): """Test parameters to ignore are carried over for DDP.""" class WeirdModule(torch.nn.Module): def _save_to_state_dict(self, destination, prefix, keep_vars): return {"something": "something"} class CustomModel(BoringModel): def __init__(self): super().__init__() self.weird_module = WeirdModule() # should be skip. self._ddp_params_and_buffers_to_ignore = ["something"] class CustomCallback(Callback): def on_train_start(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: assert isinstance(trainer.strategy.model, DistributedDataParallel) assert trainer.strategy.model.parameters_to_ignore == ["module.something"] assert trainer.strategy.model.module._ddp_params_and_buffers_to_ignore == ["module.something"] model = CustomModel() trainer = Trainer( default_root_dir=tmpdir, fast_dev_run=True, precision=precision, strategy="ddp", accelerator="gpu", devices=2, callbacks=CustomCallback(), enable_progress_bar=False, enable_model_summary=False, ) trainer.fit(model) @pytest.mark.parametrize( ["process_group_backend", "device_str", "expected_process_group_backend"], [ pytest.param("foo", "cpu", "foo"), pytest.param("foo", "cuda:0", "foo"), pytest.param(None, "cuda:0", "nccl"), pytest.param(None, "cpu", "gloo"), ], ) def test_ddp_process_group_backend(process_group_backend, device_str, expected_process_group_backend): """Test settings for process group backend.""" class MockDDPStrategy(DDPStrategy): def __init__(self, root_device, process_group_backend): self._root_device = root_device super().__init__(process_group_backend=process_group_backend) @property def root_device(self): return self._root_device strategy = MockDDPStrategy(process_group_backend=process_group_backend, root_device=torch.device(device_str)) assert strategy._get_process_group_backend() == expected_process_group_backend @pytest.mark.parametrize( "strategy_name,expected_ddp_kwargs", [ ("ddp", {}), ("ddp_find_unused_parameters_false", {"find_unused_parameters": False}), ], ) def test_ddp_kwargs_from_registry(strategy_name, expected_ddp_kwargs): trainer = Trainer(strategy=strategy_name) assert trainer.strategy._ddp_kwargs == expected_ddp_kwargs