"""Test deprecated functionality which will be removed in vX.Y.Z""" import random import sys import pytest import torch from pytorch_lightning import Trainer from pytorch_lightning.callbacks import GpuUsageLogger, LearningRateLogger from tests.base import EvalModelTemplate def _soft_unimport_module(str_module): # once the module is imported e.g with parsing with pytest it lives in memory if str_module in sys.modules: del sys.modules[str_module] def test_tbd_remove_in_v0_11_0_trainer(): with pytest.deprecated_call(match='will be removed in v0.11.0'): LearningRateLogger() with pytest.deprecated_call(match='will be removed in v0.11.0'): trainer = Trainer(row_log_interval=8) assert trainer.log_every_n_steps == 8 with pytest.deprecated_call(match='will be removed in v0.11.0'): assert trainer.row_log_interval == 8 with pytest.deprecated_call(match='will be removed in v0.11.0'): trainer = Trainer(log_save_interval=9) assert trainer.flush_logs_every_n_steps == 9 with pytest.deprecated_call(match='will be removed in v0.11.0'): assert trainer.log_save_interval == 9 @pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine") def test_tbd_remove_in_v0_11_0_trainer_gpu(): with pytest.deprecated_call(match='will be removed in v0.11.0'): GpuUsageLogger() class ModelVer0_6(EvalModelTemplate): # todo: this shall not be needed while evaluate asks for dataloader explicitly def val_dataloader(self): return self.dataloader(train=False) def validation_step(self, batch, batch_idx, *args, **kwargs): return {'val_loss': torch.tensor(0.6)} def validation_end(self, outputs): return {'val_loss': torch.tensor(0.6)} def test_dataloader(self): return self.dataloader(train=False) def test_end(self, outputs): return {'test_loss': torch.tensor(0.6)} class ModelVer0_7(EvalModelTemplate): # todo: this shall not be needed while evaluate asks for dataloader explicitly def val_dataloader(self): return self.dataloader(train=False) def validation_step(self, batch, batch_idx, *args, **kwargs): return {'val_loss': torch.tensor(0.7)} def validation_end(self, outputs): return {'val_loss': torch.tensor(0.7)} def test_dataloader(self): return self.dataloader(train=False) def test_end(self, outputs): return {'test_loss': torch.tensor(0.7)} # def test_tbd_remove_in_v1_0_0_model_hooks(): # # model = ModelVer0_6() # # with pytest.deprecated_call(match='will be removed in v1.0. Use `test_epoch_end` instead'): # trainer = Trainer(logger=False) # trainer.test(model) # assert trainer.logger_connector.callback_metrics == {'test_loss': torch.tensor(0.6)} # # with pytest.deprecated_call(match='will be removed in v1.0. Use `validation_epoch_end` instead'): # trainer = Trainer(logger=False) # # TODO: why `dataloder` is required if it is not used # result = trainer._evaluate(model, dataloaders=[[None]], max_batches=1) # assert result[0] == {'val_loss': torch.tensor(0.6)} # # model = ModelVer0_7() # # with pytest.deprecated_call(match='will be removed in v1.0. Use `test_epoch_end` instead'): # trainer = Trainer(logger=False) # trainer.test(model) # assert trainer.logger_connector.callback_metrics == {'test_loss': torch.tensor(0.7)} # # with pytest.deprecated_call(match='will be removed in v1.0. Use `validation_epoch_end` instead'): # trainer = Trainer(logger=False) # # TODO: why `dataloder` is required if it is not used # result = trainer._evaluate(model, dataloaders=[[None]], max_batches=1) # assert result[0] == {'val_loss': torch.tensor(0.7)}