from unittest.mock import patch, MagicMock import torch from pytorch_lightning import Trainer from pytorch_lightning.loggers import NeptuneLogger from tests.base import EvalModelTemplate @patch('pytorch_lightning.loggers.neptune.neptune') def test_neptune_online(neptune): logger = NeptuneLogger(api_key='test', project_name='project') created_experiment = neptune.Session.with_default_backend().get_project().create_experiment() # It's important to check if the internal variable _experiment was initialized in __init__. # Calling logger.experiment would cause a side-effect of initializing _experiment, # if it wasn't already initialized. assert logger._experiment == created_experiment assert logger.name == created_experiment.name assert logger.version == created_experiment.id @patch('pytorch_lightning.loggers.neptune.neptune') def test_neptune_offline(neptune): logger = NeptuneLogger(offline_mode=True) neptune.Session.assert_called_once_with(backend=neptune.OfflineBackend()) assert logger.experiment == neptune.Session().get_project().create_experiment() @patch('pytorch_lightning.loggers.neptune.neptune') def test_neptune_additional_methods(neptune): logger = NeptuneLogger(api_key='test', project_name='project') created_experiment = neptune.Session.with_default_backend().get_project().create_experiment() logger.log_metric('test', torch.ones(1)) created_experiment.log_metric.assert_called_once_with('test', torch.ones(1)) created_experiment.log_metric.reset_mock() logger.log_metric('test', 1.0) created_experiment.log_metric.assert_called_once_with('test', 1.0) created_experiment.log_metric.reset_mock() logger.log_metric('test', 1.0, step=2) created_experiment.log_metric.assert_called_once_with('test', x=2, y=1.0) created_experiment.log_metric.reset_mock() logger.log_text('test', 'text') created_experiment.log_metric.assert_called_once_with('test', 'text') created_experiment.log_metric.reset_mock() logger.log_image('test', 'image file') created_experiment.log_image.assert_called_once_with('test', 'image file') created_experiment.log_image.reset_mock() logger.log_image('test', 'image file', step=2) created_experiment.log_image.assert_called_once_with('test', x=2, y='image file') created_experiment.log_image.reset_mock() logger.log_artifact('file') created_experiment.log_artifact.assert_called_once_with('file', None) logger.set_property('property', 10) created_experiment.set_property.assert_called_once_with('property', 10) logger.append_tags('one tag') created_experiment.append_tags.assert_called_once_with('one tag') created_experiment.append_tags.reset_mock() logger.append_tags(['two', 'tags']) created_experiment.append_tags.assert_called_once_with('two', 'tags') @patch('pytorch_lightning.loggers.neptune.neptune') def test_neptune_leave_open_experiment_after_fit(neptune, tmpdir): """Verify that neptune experiment was closed after training""" model = EvalModelTemplate() def _run_training(logger): logger._experiment = MagicMock() trainer = Trainer( default_root_dir=tmpdir, max_epochs=1, limit_train_batches=0.05, logger=logger, ) trainer.fit(model) return logger logger_close_after_fit = _run_training(NeptuneLogger(offline_mode=True)) assert logger_close_after_fit._experiment.stop.call_count == 1 logger_open_after_fit = _run_training(NeptuneLogger(offline_mode=True, close_after_fit=False)) assert logger_open_after_fit._experiment.stop.call_count == 0