import argparse from shutil import copyfile import torch from pytorch_lightning import _logger as log from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint KEYS_MAPPING = { "checkpoint_callback_best_model_score": (ModelCheckpoint, "best_model_score"), "checkpoint_callback_best_model_path": (ModelCheckpoint, "best_model_path"), "checkpoint_callback_best": (ModelCheckpoint, "best_model_score"), "early_stop_callback_wait": (EarlyStopping, "wait_count"), "early_stop_callback_patience": (EarlyStopping, "patience"), } def upgrade_checkpoint(filepath): checkpoint = torch.load(filepath) checkpoint["callbacks"] = checkpoint.get("callbacks") or {} for key, new_path in KEYS_MAPPING.items(): if key in checkpoint: value = checkpoint[key] callback_type, callback_key = new_path checkpoint["callbacks"][callback_type] = checkpoint["callbacks"].get(callback_type) or {} checkpoint["callbacks"][callback_type][callback_key] = value del checkpoint[key] torch.save(checkpoint, filepath) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Upgrade an old checkpoint to the current schema. \ This will also save a backup of the original file." ) parser.add_argument("--file", help="filepath for a checkpoint to upgrade") args = parser.parse_args() log.info("Creating a backup of the existing checkpoint file before overwriting in the upgrade process.") copyfile(args.file, args.file + ".bak") upgrade_checkpoint(args.file)