# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib from abc import ABC from collections.abc import Mapping, Sequence from copy import copy from typing import Any, Callable, Union import torch TORCHTEXT_AVAILABLE = importlib.util.find_spec("torchtext") is not None if TORCHTEXT_AVAILABLE: from torchtext.data import Batch else: Batch = type(None) def apply_to_collection(data: Any, dtype: Union[type, tuple], function: Callable, *args, **kwargs) -> Any: """ Recursively applies a function to all elements of a certain dtype. Args: data: the collection to apply the function to dtype: the given function will be applied to all elements of this dtype function: the function to apply *args: positional arguments (will be forwarded to calls of ``function``) **kwargs: keyword arguments (will be forwarded to calls of ``function``) Returns: the resulting collection """ elem_type = type(data) # Breaking condition if isinstance(data, dtype): return function(data, *args, **kwargs) # Recursively apply to collection items elif isinstance(data, Mapping): return elem_type({k: apply_to_collection(v, dtype, function, *args, **kwargs) for k, v in data.items()}) elif isinstance(data, tuple) and hasattr(data, '_fields'): # named tuple return elem_type(*(apply_to_collection(d, dtype, function, *args, **kwargs) for d in data)) elif isinstance(data, Sequence) and not isinstance(data, str): return elem_type([apply_to_collection(d, dtype, function, *args, **kwargs) for d in data]) # data is neither of dtype, nor a collection return data class TransferableDataType(ABC): """ A custom type for data that can be moved to a torch device via `.to(...)`. Example: >>> isinstance(dict, TransferableDataType) False >>> isinstance(torch.rand(2, 3), TransferableDataType) True >>> class CustomObject: ... def __init__(self): ... self.x = torch.rand(2, 2) ... def to(self, device): ... self.x = self.x.to(device) ... return self >>> isinstance(CustomObject(), TransferableDataType) True """ @classmethod def __subclasshook__(cls, subclass): if cls is TransferableDataType: to = getattr(subclass, "to", None) return callable(to) return NotImplemented def move_data_to_device(batch: Any, device: torch.device): """ Transfers a collection of data to the given device. Any object that defines a method ``to(device)`` will be moved and all other objects in the collection will be left untouched. Args: batch: A tensor or collection of tensors or anything that has a method `.to(...)`. See :func:`apply_to_collection` for a list of supported collection types. device: The device to which the data should be moved Return: the same collection but with all contained tensors residing on the new device. See Also: - :meth:`torch.Tensor.to` - :class:`torch.device` """ def batch_to(data): # try to move torchtext data first if TORCHTEXT_AVAILABLE and isinstance(data, Batch): # Shallow copy because each Batch has a reference to Dataset which contains all examples device_data = copy(data) for field in data.fields: device_field = move_data_to_device(getattr(data, field), device) setattr(device_data, field, device_field) return device_data kwargs = dict(non_blocking=True) if isinstance(data, torch.Tensor) else {} return data.to(device, **kwargs) dtype = (TransferableDataType, Batch) if TORCHTEXT_AVAILABLE else TransferableDataType return apply_to_collection(batch, dtype=dtype, function=batch_to)