# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pickle from argparse import ArgumentParser from unittest.mock import MagicMock from typing import Optional import pytest import torch from torch.utils.data import DataLoader, random_split from pytorch_lightning import LightningDataModule, Trainer, seed_everything from tests.base import EvalModelTemplate from tests.base.datasets import TrialMNIST from tests.base.datamodules import TrialMNISTDataModule from tests.base.develop_utils import reset_seed from pytorch_lightning.utilities.model_utils import is_overridden from pytorch_lightning.accelerators.gpu_accelerator import GPUAccelerator from pytorch_lightning.callbacks import ModelCheckpoint def test_can_prepare_data(tmpdir): dm = TrialMNISTDataModule() trainer = Trainer() trainer.datamodule = dm # 1 no DM # prepare_data_per_node = True # local rank = 0 (True) trainer.prepare_data_per_node = True trainer.local_rank = 0 assert trainer.data_connector.can_prepare_data() # local rank = 1 (False) trainer.local_rank = 1 assert not trainer.data_connector.can_prepare_data() # prepare_data_per_node = False (prepare across all nodes) # global rank = 0 (True) trainer.prepare_data_per_node = False trainer.node_rank = 0 trainer.local_rank = 0 assert trainer.data_connector.can_prepare_data() # global rank = 1 (False) trainer.node_rank = 1 trainer.local_rank = 0 assert not trainer.data_connector.can_prepare_data() trainer.node_rank = 0 trainer.local_rank = 1 assert not trainer.data_connector.can_prepare_data() # 2 dm # prepar per node = True # local rank = 0 (True) trainer.prepare_data_per_node = True trainer.local_rank = 0 # is_overridden prepare data = True # has been called # False dm._has_prepared_data = True assert not trainer.data_connector.can_prepare_data() # has not been called # True dm._has_prepared_data = False assert trainer.data_connector.can_prepare_data() # is_overridden prepare data = False # True dm.prepare_data = None assert trainer.data_connector.can_prepare_data() def test_hooks_no_recursion_error(tmpdir): # hooks were appended in cascade every tine a new data module was instantiated leading to a recursion error. # See https://github.com/PyTorchLightning/pytorch-lightning/issues/3652 class DummyDM(LightningDataModule): def setup(self, *args, **kwargs): pass def prepare_data(self, *args, **kwargs): pass for i in range(1005): dm = DummyDM() dm.setup() dm.prepare_data() def test_base_datamodule(tmpdir): dm = TrialMNISTDataModule() dm.prepare_data() dm.setup() def test_base_datamodule_with_verbose_setup(tmpdir): dm = TrialMNISTDataModule() dm.prepare_data() dm.setup('fit') dm.setup('test') def test_data_hooks_called(tmpdir): dm = TrialMNISTDataModule() assert dm.has_prepared_data is False assert dm.has_setup_fit is False assert dm.has_setup_test is False dm.prepare_data() assert dm.has_prepared_data is True assert dm.has_setup_fit is False assert dm.has_setup_test is False dm.setup() assert dm.has_prepared_data is True assert dm.has_setup_fit is True assert dm.has_setup_test is True def test_data_hooks_called_verbose(tmpdir): dm = TrialMNISTDataModule() assert dm.has_prepared_data is False assert dm.has_setup_fit is False assert dm.has_setup_test is False dm.prepare_data() assert dm.has_prepared_data is True assert dm.has_setup_fit is False assert dm.has_setup_test is False dm.setup('fit') assert dm.has_prepared_data is True assert dm.has_setup_fit is True assert dm.has_setup_test is False dm.setup('test') assert dm.has_prepared_data is True assert dm.has_setup_fit is True assert dm.has_setup_test is True def test_data_hooks_called_with_stage_kwarg(tmpdir): dm = TrialMNISTDataModule() dm.prepare_data() assert dm.has_prepared_data is True dm.setup(stage='fit') assert dm.has_setup_fit is True assert dm.has_setup_test is False dm.setup(stage='test') assert dm.has_setup_fit is True assert dm.has_setup_test is True def test_dm_add_argparse_args(tmpdir): parser = ArgumentParser() parser = TrialMNISTDataModule.add_argparse_args(parser) args = parser.parse_args(['--data_dir', './my_data']) assert args.data_dir == './my_data' def test_dm_init_from_argparse_args(tmpdir): parser = ArgumentParser() parser = TrialMNISTDataModule.add_argparse_args(parser) args = parser.parse_args(['--data_dir', './my_data']) dm = TrialMNISTDataModule.from_argparse_args(args) dm.prepare_data() dm.setup() def test_dm_pickle_after_init(tmpdir): dm = TrialMNISTDataModule() pickle.dumps(dm) def test_train_loop_only(tmpdir): dm = TrialMNISTDataModule(tmpdir) model = EvalModelTemplate() model.validation_step = None model.validation_step_end = None model.validation_epoch_end = None model.test_step = None model.test_step_end = None model.test_epoch_end = None trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, weights_summary=None, ) # fit model result = trainer.fit(model, dm) assert result == 1 assert trainer.logger_connector.callback_metrics['loss'] < 0.6 def test_train_val_loop_only(tmpdir): reset_seed() dm = TrialMNISTDataModule(tmpdir) model = EvalModelTemplate() model.validation_step = None model.validation_step_end = None model.validation_epoch_end = None trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, weights_summary=None, ) # fit model result = trainer.fit(model, dm) assert result == 1 assert trainer.logger_connector.callback_metrics['loss'] < 0.6 def test_dm_checkpoint_save(tmpdir): reset_seed() dm = TrialMNISTDataModule(tmpdir) model = EvalModelTemplate() trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, weights_summary=None, callbacks=[ModelCheckpoint(dirpath=tmpdir, monitor='early_stop_on')], ) # fit model result = trainer.fit(model, dm) checkpoint_path = list(trainer.checkpoint_callback.best_k_models.keys())[0] checkpoint = torch.load(checkpoint_path) assert dm.__class__.__name__ in checkpoint assert checkpoint[dm.__class__.__name__] == dm.__class__.__name__ def test_test_loop_only(tmpdir): reset_seed() dm = TrialMNISTDataModule(tmpdir) model = EvalModelTemplate() trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, weights_summary=None, ) trainer.test(model, datamodule=dm) def test_full_loop(tmpdir): reset_seed() dm = TrialMNISTDataModule(tmpdir) model = EvalModelTemplate() trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, weights_summary=None, deterministic=True, ) # fit model result = trainer.fit(model, dm) assert result == 1 # test result = trainer.test(datamodule=dm) result = result[0] assert result['test_acc'] > 0.8 def test_trainer_attached_to_dm(tmpdir): reset_seed() dm = TrialMNISTDataModule(tmpdir) model = EvalModelTemplate() trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, weights_summary=None, deterministic=True, ) # fit model result = trainer.fit(model, dm) assert result == 1 assert dm.trainer is not None # test result = trainer.test(datamodule=dm) result = result[0] assert dm.trainer is not None @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="test requires multi-GPU machine") def test_full_loop_single_gpu(tmpdir): reset_seed() dm = TrialMNISTDataModule(tmpdir) model = EvalModelTemplate() trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, weights_summary=None, gpus=1, deterministic=True, ) # fit model result = trainer.fit(model, dm) assert result == 1 # test result = trainer.test(datamodule=dm) result = result[0] assert result['test_acc'] > 0.8 @pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine") def test_full_loop_dp(tmpdir): reset_seed() dm = TrialMNISTDataModule(tmpdir) model = EvalModelTemplate() trainer = Trainer( default_root_dir=tmpdir, max_epochs=3, weights_summary=None, accelerator='dp', gpus=2, deterministic=True, ) # fit model result = trainer.fit(model, dm) assert result == 1 # test result = trainer.test(datamodule=dm) result = result[0] assert result['test_acc'] > 0.8 @pytest.mark.skipif(torch.cuda.device_count() < 1, reason="test requires multi-GPU machine") def test_dm_transfer_batch_to_device(tmpdir): class CustomBatch: def __init__(self, data): self.samples = data[0] self.targets = data[1] class CurrentTestDM(LightningDataModule): hook_called = False def transfer_batch_to_device(self, data, device): self.hook_called = True if isinstance(data, CustomBatch): data.samples = data.samples.to(device) data.targets = data.targets.to(device) else: data = super().transfer_batch_to_device(data, device) return data model = EvalModelTemplate() dm = CurrentTestDM() batch = CustomBatch((torch.zeros(5, 28), torch.ones(5, 1, dtype=torch.long))) trainer = Trainer(gpus=1) # running .fit() would require us to implement custom data loaders, we mock the model reference instead trainer.get_model = MagicMock(return_value=model) if is_overridden('transfer_batch_to_device', dm): model.transfer_batch_to_device = dm.transfer_batch_to_device trainer.accelerator_backend = GPUAccelerator(trainer) batch_gpu = trainer.accelerator_backend.batch_to_device(batch, torch.device('cuda:0')) expected = torch.device('cuda', 0) assert dm.hook_called assert batch_gpu.samples.device == batch_gpu.targets.device == expected class CustomMNISTDataModule(LightningDataModule): def __init__(self, data_dir: str = "./"): super().__init__() self.data_dir = data_dir self._epochs_called_for = [] def prepare_data(self): TrialMNIST(self.data_dir, train=True, download=True) def setup(self, stage: Optional[str] = None): mnist_full = TrialMNIST( root=self.data_dir, train=True, num_samples=64, download=True ) self.mnist_train, self.mnist_val = random_split(mnist_full, [128, 64]) self.dims = self.mnist_train[0][0].shape def train_dataloader(self): assert self.trainer.current_epoch not in self._epochs_called_for self._epochs_called_for.append(self.trainer.current_epoch) return DataLoader(self.mnist_train, batch_size=4) def test_dm_reload_dataloaders_every_epoch(tmpdir): """Test datamodule, where trainer argument reload_dataloaders_every_epoch is set to True/False""" dm = CustomMNISTDataModule(tmpdir) model = EvalModelTemplate() model.validation_step = None model.validation_step_end = None model.validation_epoch_end = None model.test_step = None model.test_step_end = None model.test_epoch_end = None trainer = Trainer( default_root_dir=tmpdir, max_epochs=2, limit_train_batches=0.01, reload_dataloaders_every_epoch=True, ) trainer.fit(model, dm)