# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Callable, List, Optional, Tuple, Union import torch from torch import Tensor from torch.nn import Module from torch.optim import Optimizer import pytorch_lightning as pl from pytorch_lightning.plugins.base_plugin import Plugin from pytorch_lightning.utilities import GradClipAlgorithmType from pytorch_lightning.utilities.types import _PARAMETERS class PrecisionPlugin(Plugin): """ Base class for all plugins handling the precision-specific parts of the training. The class attribute precision must be overwritten in child classes. The default value reflects fp32 training. """ precision: Union[str, int] = 32 def master_params(self, optimizer: Optimizer) -> _PARAMETERS: """ The master params of the model. Returns the plain model params here. Maybe different in other precision plugins. """ for group in optimizer.param_groups: for p in group["params"]: yield p def connect( self, model: Module, optimizers: List[Optimizer], lr_schedulers: List[Any], ) -> Tuple[Module, List[Optimizer], List[Any]]: """Connects this plugin to the accelerator and the training process""" return model, optimizers, lr_schedulers def backward( self, model: 'pl.LightningModule', closure_loss: Tensor, optimizer: Optimizer, opt_idx: int, should_accumulate: bool, *args: Any, **kwargs: Any, ) -> Tensor: """performs the actual backpropagation Args: model: the model to be optimized closure_loss: the loss value obtained from the closure optimizer: the optimizer to perform the step lateron opt_idx: the optimizer's index should_accumulate: whether to accumulate gradients or not """ automatic_optimization = model.automatic_optimization # do backward pass if automatic_optimization: model.backward(closure_loss, optimizer, opt_idx) else: closure_loss.backward(*args, **kwargs) # once backward has been applied, release graph closure_loss = closure_loss.detach() return closure_loss def pre_optimizer_step( self, pl_module: 'pl.LightningModule', optimizer: Optimizer, optimizer_idx: int, lambda_closure: Callable, **kwargs: Any, ) -> bool: """Hook to do something before each optimizer step.""" return True def post_optimizer_step(self, optimizer: Optimizer, optimizer_idx: int) -> None: """Hook to do something after each optimizer step.""" def clip_gradients( self, optimizer: Optimizer, clip_val: Union[int, float], gradient_clip_algorithm: GradClipAlgorithmType = GradClipAlgorithmType.NORM, model: Optional[Module] = None ) -> None: """Clips the gradients""" if clip_val is None: return clip_val = float(clip_val) if clip_val <= 0: return if gradient_clip_algorithm == GradClipAlgorithmType.VALUE: self.clip_grad_by_value(optimizer, clip_val) elif gradient_clip_algorithm == GradClipAlgorithmType.NORM: # TODO: there should be a mechanism to set `norm_type` self.clip_grad_by_norm(optimizer, clip_val) def clip_grad_by_value(self, optimizer: Optimizer, clip_val: Union[int, float]) -> None: """Clip gradients by value""" parameters = self.master_params(optimizer) torch.nn.utils.clip_grad_value_(parameters, clip_value=clip_val) def clip_grad_by_norm(self, optimizer: Optimizer, clip_val: Union[int, float]) -> None: """Clip gradients by norm""" parameters = self.master_params(optimizer) torch.nn.utils.clip_grad_norm_(parameters, clip_val)